Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-12T18:18:02.517Z Has data issue: false hasContentIssue false

Comparison of AlN films grown by RF magnetron sputtering and ion-assisted molecular beam epitaxy

Published online by Cambridge University Press:  22 February 2011

J. Chan
Affiliation:
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720
T. Fu
Affiliation:
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720
N. W. Cheung
Affiliation:
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720
J. Ross
Affiliation:
Energy and Environment Division Lawrence Berkeley LaboratoryUniversity of California, Berkeley, CA 94720
N. Newman
Affiliation:
Energy and Environment Division Lawrence Berkeley LaboratoryUniversity of California, Berkeley, CA 94720
M. Rubin
Affiliation:
Energy and Environment Division Lawrence Berkeley LaboratoryUniversity of California, Berkeley, CA 94720
Get access

Abstract

Crystalline aluminum nitride (AIN) thin films were formed on various substrates by using RF magnetron sputtering of an Al target in a nitrogen plasma and also by ion-assisted molecular beam epitaxy (IAMBE). Basal-oriented AIN/(1 11) Si showed a degradation of crystallinity with increased substrate temperature from 550 to 770 °C, while the crystallinity of AIN/ (0001) A12O3 samples improved from 700 to 850 °C. The optical absorption characteristics of the AIN/(0001) A12O3 films as grown by both deposition methods revealed a decrease in subbandgap absorption with increased substrate temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Yim, W.M., Stofko, E.J., Zanzucchi, P.J., Pankove, J.I., Ettenburg, M., and Gilbert, S.L., J. Appl. Phys., vol.44, pp.292294,1973.Google Scholar
[2] Mizuta, M., Fujieda, S., and Matsumoto, Y., Ext.Abstr.19th Conf. on Sol.St.Dev. and Matd., pp.135136, 1987.Google Scholar
[3] Chan, J.S., Cheung, N.W., and Yu, K.M., Mat.Res.Soc.Symp.Proc., vol.268, pp.377–82,1992.Google Scholar
[4] Duffy, M.T., Wang, C.C., O'Clock, G.D. Jr., McFarlane, S.H. III, and Zanzucchi, P.J., J. Electr. Matl., vol.2, no.2, pp.359374, 1973.Google Scholar
[5] Tummala, R., Microelectronics Packaging Handbook, edited by Tummala, R. and Rymaszewski, E. (Van Nostrand Reinhold, New York, 1989), pp. 493494.Google Scholar
[6] Ho, K.L., Jensen, K.F., Hanson, S.A., Evans, J.F, Boyd, D.C., and Gladfelter, W.L., Mat.Res.Soc.Symp.Proc., vol.162, pp.605610, 1990.Google Scholar
[7] Stedile, F.C., Baumvol, J.R.B., Schreiner, W.H., and Freire, F.L. Jr., J. Vac. Sci. Technol. A, vol.10(5), pp.32723275, 1992.Google Scholar
[8] Meng, W.J., Sell, J.A., and Waldo, R.A., J. Vac. Sci. Technol.A, vol.9, pp.21832186,1991.Google Scholar
[9] Yoshida, S., Misawa, S., and Gonda, S., J. Appl. Phys., vol.53, pp.68446847, 1982.Google Scholar
[10] Sitar, Z., Paisley, M.J., Yan, B., Ruan, J., Choyke, W.J., and Davis, R.F, J. Vac. Sci. Technol. B, vol.8, pp.316321, 1990.Google Scholar
[11] Miyauchi, M., Ishikawa, Y., and Shibata, N., Jpn. J. Appl. Phys., vol.31, pp.L171420,1992.Google Scholar
[12] Aita, C.R., J. Appl. Phys., vol.53, pp.1807–11, 1982.Google Scholar
[13] MacChesney, J.B., Bridenbaugh, P.M. and O'Connor, P.B., Mater.Res.Bull., vol.5, p.783,1970.Google Scholar
[14] Newman, N., Ross, J. and Rubin, M., Appl.Phys.Lett., vol.62, pp.12421244.Google Scholar