Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-18T14:15:55.375Z Has data issue: false hasContentIssue false

Comparison of Cvd and Pvd Tungsten for Gigabit-Scale Dram Interconnections

Published online by Cambridge University Press:  15 February 2011

John M. Drynan
Affiliation:
ULSI Device Development Laboratories, NEC Corporation 1120 Shimokuzawa, Sagamihara, Kanagawa 229, Japan
Kuniaki Koyama
Affiliation:
ULSI Device Development Laboratories, NEC Corporation 1120 Shimokuzawa, Sagamihara, Kanagawa 229, Japan
Get access

Abstract

The characteristics of blanket CVD-W and PVD-W films with and without TiN/Ti underlayers have been investigated in terms of both materials properties such as resistance, stress, morphology, crystallinity, and composition, and prospective applications such as for DRAM bit line interconnections. The presence of a TiN underlayer has been found to induce preferential growth of dominant W (110) crystal orientation for both CVD-W and PVD-W whereas absence of TiN results in a W film of mixed W (110), (200), and (211) crystallites. Sheet resistance measurements of both blank films and conductor lines have shown that a 200nm-thick PVD-W film yields a lower resistance than a similar film with TiN underlayer and hence larger total thickness. This correspondence of W (110) intensity with resistance implies that reduction of the (110) oriented crystallites within a W film can yield lower resistances. Thus, by elimination of the TiN/Ti underlayer, monolayer PVD-W or CVD-W with a PVD-W underlayer can be effectively adapted to quarter-micron conductors for bit line interconnections and related structures in DRAM memory and other ULSI devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Drynan, J.M., Hada, H., and Kunio, T. in Advanced Metal-lization and Processing for Semiconductor Devices and Circuits II, edited by Katz, A., Murarka, S.P., Nissim, Y.I., and Harper, J.M.E., (Materials Research Society Proc. 260, Pittsburgh, PA, 1992) pp. 323328.Google Scholar
2. Ohba, T. in Advanced Metallization for ULSI Applications, edited by Rana, V.V.S., Joshi, R.V., and Ohdomari, I. (Materials Research Society, Pittsburgh, PA, 1992) pp. 2534.Google Scholar
3. Rutten, M., Greenwell, D., Luce, S., and Dreves, R., Advanced Metallization for ULSI Applications, Materials Research Society, Pittsburgh, PA, 1992) pp. 2534.Google Scholar
4. Byun, J.S., Kim, J.K., Park, J.W., and Kim, J.H., SSDM Extended Abstracts, 79 (1995).Google Scholar
5. Bronner, G., Aochi, H., Gall, M., Gambino, J., Gernhardt, S., Hammerl, E., Ho, H., Iba, J., Ishiuchi, H., Jaso, M., Kleinhenz, R., Mii, T., Narita, M., Nesbit, L., Neumueller, W., Nitayama, A., Ohiwa, T., Parke, S., Ryan, J., Sato, T., Takato, H., and Yoshikawa, S., Symp. VLSI Technology Digest, 15 (1995).Google Scholar
6. Kang, H.K., Kim, K.H., Shin, Y.G., Park, I.S., Ko, K.M., Kim, C.G., Oh, K.Y., Kim, S.E., Hong, C.G., Kwon, K.W., Yoo, J.Y., Kim, Y.G., Lee, C.G., Paick, W.S., Suh, D.I., Park, C.J., Lee, S.I., Ahn, S.T., Hwang, C.G., and Lee, M.Y., IEDM Technical Digest, 635 (1994).Google Scholar
7. Kikkawa, T. in Advanced Metallization for ULSI Applications in 1993, edited by Favreau, D.P., -Diamand, Y.S., and Horiike, Y. (Materials Research Society, Pittsburgh, PA, 1994) pp. 311.Google Scholar
8. Goto, H., Kobayashi, N., and Homma, Y., SSDM Extended Abstracts, 183 (1991).Google Scholar
9. Saitoh, M., Nishida, T., Suzuki, M., Kobayashi, N., and Kure, T., in ungsten and Other Advanced Metals for VLSI/ULSI Applications V, edited by Wong, S.S. and Furukawa, S. (Materials Research Society, Pittsburgh, PA, 1990) pp. 201207.Google Scholar
10. Toyoda, A., Suzuki, Y., Orihara, K., and Hokari, Y., IEEE Trans. Electron Devices 38 (5), 965 (1991).Google Scholar
11. Drynan, J.M. and Koyama, K. in Rapid Thermal and Integrated Processing IV, edited by Brueck, S.R.J., Gelpey, J.C., Kermani, A., Regolini, J.L., and Sturm, J.C. (Materials Research Society Proc. 387, Pittsburgh, PA, 1995) pp.419430.Google Scholar
12. Drynan, J.M. and Koyama, K. in Rapid Thermal and Integrated Processing V, edited by Fiory, A., Roozeboom, F., Gelpey, J.C., Ozturk, M., and Thakur, R.P.S. (Materials Research Society Proc. 429, Pittsburgh, PA, 1996) to be published.Google Scholar
13. Petroff, P., Sheng, T.T., Sinha, A.K., Rozgonyi, G.A., and Alexander, F.B., J. Appl. Phys. 44, 2545 (1973).Google Scholar
14. Tsutsumi, T., Kotani, H., Katayama, T., Miyatake, H., Okamoto, T., and Nagao, S., in Tungsten and Other Advanced Metals for VLSI/ULSI Applications V, edited by Wong, S.S. and Furukawa, S. (Materials Research Society, Pittsburgh, PA, 1990) pp. 3137.Google Scholar
15. Nishioka, Y., Shinriki, H., and Mukai, K., J. Appl. Phys. 61, 2335 (1987).Google Scholar
16. Ohji, Y, Matsui, T., Itoga, T., Hirayama, M., Sugawara, Y., Torii, K., Miki, H., Nakata, M., Asano, I., Iljima, S., and Kawamoto, Y., IEDM Technical Digest, 111 (1995).Google Scholar
17. Kaga, T., Sudoh, Y., Goto, H., Shoji, K., Kisu, T., Yamashita, H., Nagai, R., lijima, S., Ohkura, M., Murai, F., Tanaka, T., Goto, Y., Yokoyama, N., Horiguchi, M., lsoda, M., Nishida, T., and Takeda, E., IEDM Technical Digest, 927 (1994).Google Scholar