Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-28T03:20:38.231Z Has data issue: false hasContentIssue false

Comparison of Experiment and Theory of the Photoconductivity of a-Si:H up to a Generation Rate of 1028cm−3s−1

Published online by Cambridge University Press:  10 February 2011

P. Stradins
Affiliation:
James Franck Institute, University of Chicago, Chicago, IL,60637
H. Fritzschei
Affiliation:
James Franck Institute, University of Chicago, Chicago, IL,60637
P. Tzanetakis
Affiliation:
Institute of Electronic Structure and Laser, FORTH, 71110 Heraklion, Crete, Greece
N. Kopidakis
Affiliation:
James Franck Institute, University of Chicago, Chicago, IL,60637
Get access

Abstract

We have studied the dependence of the photoconductivity σp on photocarrier generation rate G in intrinsic a-Si:H at 300K between G=1012cm−3s−1 and 1028cm−3s−1. Below a certain value Go, we find σo =AGγ with γ=0.9±0.05 and the values of A vary considerably with defect concentration Nd which signifies monomolecular recombination through defects. Above Go the recombination is bimolecular, γ=0.5±0.02 and A=(6±3)×10−15 Ω−1cm1/2s1/2 is indpendent of Nd. The transition value Go is about 3×1020cm−3s−1 for high quality annealed a-Si:H and increases with Nd. A simulation of σp(G) assuming conduction in and recombination from extended states fits our experiments within a capture coefficient Ct=(6±2)×10−9cm3s−1 of carriers to their opposite tail states. Our Ct is close to the value (5±2)×10−9cm3s−1 obtained from optical measurements but higher than (0.5±0.1)×10−9cm3s−1 determined from photoelectric studies. Below T=150K our model calculations overestimate σp because the tunneling transitions, becoming important for recombination and conduction, are neglected.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shklovskii, B. I., Fritzsche, H. and Baranovskii, S. D., J. Non-Cryst. Solids 114 (1989) 325.Google Scholar
2. Fritzsche, H., J. Non-Cryst. Solids 114 (1989) 1; R. E. Johanson, H. Fritzsche and A. Vomvas, J. Non-Cryst. Solids 114 (1989) p.274.Google Scholar
3. Simmons, J. G. and Taylor, G. W., Phys. Rev. B4 (1971) 502.Google Scholar
4. Stradins, P., Fritzsche, H. and Tran, M. Q., Mat. Res. Soc. Syrup. 336 (1994) 227.Google Scholar
5. Tzanetakis, P., Kopidakis, N. and Fritzsche, H., Proc. of 16th Intl. Conf. on Amorphous Semiconductors, Kobe 1995, to be published in J. Non-Cryst. Solids (1996).Google Scholar
6. Tran, M. Q., Philos. Mag. B72. (1995) 35.Google Scholar
7. Juska, G., Kocka, J., Viliunas, M. and Arlauskas, K., Phys. Rev. B51 (1995) 16668.Google Scholar
8. Shimizu, T., Iwani, M., Okagawa, T., Morimoto, A. and Kumeda, M., MRS Conf. Proc. 258 (1992) 455.Google Scholar
9. Kopidakis, N., Tzanetakis, P., Fritzsche, H. and Stradins, P., MRS Conf. Proc. (1996) this volume.Google Scholar
10. Fritzsche, H., Solid State Commun. 94 (1995) 953.Google Scholar