Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-25T10:31:28.184Z Has data issue: false hasContentIssue false

Composite Polyphase Electrochemical Cell Components

Published online by Cambridge University Press:  21 February 2011

S. Crouch-Baker
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
R. A. Huggins
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
Get access

Abstract

A number of composite polyphase electrode systems employing the mixed-conducting matrix principle have been proposed in this laboratory as alternatives to single lithium alloy systems for use as negative electrodes in both room and intermediate temperature lithium-based cells. Further, a composite hydroxide ion conducting electrolyte has been considered for use at intermediate temperatures which utilises liquid lithium hydroxide formed in situ and contained within a lithium aluminium oxide ceramic matrix.

Both these, and other, composite electrochemical cell component systems serve to overcome certain disadvantages found in simpler, non-composite designs. In order to operate effectively, the electrode and electrolyte systems described here must satisfy certain thermodynamic, kinetic and mechanical criteria. In this work, these criteria are discussed, using, among others, the examples given above, with particular emphasis on the thermodynamic phase stability conditions which must be satisfied by a viable composite electrode or electrolyte system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Boukamp, B. A., Lesh, G. C. and Huggins, R. A., J. Electrochem. Soc. 128, 725 (1981).Google Scholar
2. Anani, A. A., Crouch-Baker, S. and Huggins, R. A., J. Electrochem. Soc., 135 2103 (1988).Google Scholar
3. Wen, C. J. and Huggins, R. A., J. Electrochem. Soc., 128 1181(1981).CrossRefGoogle Scholar
4. Wen, C. J. and Huggins, R. A., J. Solid State Chem. 37, 271 (1981).Google Scholar
5. Sharma, R. A. and Seefurth, R. N., J. Electrochem. Soc. 123, 1763 (1976).Google Scholar
6. Lai, S.-C., J. Electrochem. Soc., 123, 1196 (1976).Google Scholar
7. Wen, C. J. and Huggins, R. A., J. Solid State Chem, 376 (1980).Google Scholar
8. Wang, J., King, P. and Huggins, R. A., Solid State Ion. 20, 185 (1986).CrossRefGoogle Scholar
9. Wang, J., Raistrick, I. D. and Huggins, R. A., J. Electrochem. Soc. 133 457 (1986).Google Scholar
10. Anani, A., Crouch-Baker, S. and Huggins, R. A., J. Electrochem. Soc., 134, 3098 (1987).Google Scholar
11. Jow, T. R., Shacklette, L. W., Maxfield, M. and Vernick, D., J. Electrochem. Soc., 134, 1730 (1987).CrossRefGoogle Scholar
12. Maxfield, M., Jow, T. R., Gould, S., Sewchok, M. G. and Shacklette, L. W., J. Electrochem. Soc., 135, 299 (1988).Google Scholar
13. Crouch-Baker, S. and Huggins, R. A., J. Electrochem. Soc., 135, 1039 (1988).CrossRefGoogle Scholar
14. Crouch-Baker, S. and Huggins, R. A., presented at the 6th International Conference on Solid State Ionics, Garmisch-Partenkirchen, FDR, 1987; to be published in Solid State Ionics.Google Scholar
15. Johnson, R. T. Jr., Biefeld, R. M. and Keck, J. D., Mater. Res. Bull. 12 577 (1977).Google Scholar
16. Biefeld, R. M. and Johnson, R. T. Jr., J. Electrochem. Soc. 126, 1 (1979).CrossRefGoogle Scholar