Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-19T05:35:59.986Z Has data issue: false hasContentIssue false

Conditions for Collection Efficiencies Greater than one Hundred Percent

Published online by Cambridge University Press:  15 February 2011

R. Brüggemann
Affiliation:
FB Physik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, F.R., Germany Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, F. R., Germany
J. H. Zollondz
Affiliation:
FB Physik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, F.R., Germany School of Engineering, University of Abertay Dundee, Bell St, Dundee DD1 1HG, Scotland
C. Main
Affiliation:
School of Engineering, University of Abertay Dundee, Bell St, Dundee DD1 1HG, Scotland
W. Gao
Affiliation:
School of Engineering, University of Abertay Dundee, Bell St, Dundee DD1 1HG, Scotland
Get access

Abstract

An account is given for the conditions under which the collection efficiency in hydrogen ated amorphous silicon pin-diodes increases to values larger than 100 %. By specific bias illumination through the p-side bias generated photocarriers are collected under certain probe beam conditions of the collection efficiency measurement, leading to apparent large collection efficiencies. By numerical modelling we investigated the influence of the diode thickness, bias photon flux and probe absorption coefficient as well as applied voltage for possible sensor applications which may utilise this optical amplifying principle. The alternative with bias light through the n-side and probe light through the p-side is also explored. Collection efficiency values determined by the photogating of bias generated holes become only slightly larger than 100 % in contrast to the electron case where values in excess of 3000 % are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zollondz, J.-H., Brüggemann, R., Gao, W., Reynolds, S., Main, C., Bauer, G.H., in Amorphous Silicon Technology - 1996, ed. Schiff, E. A., Hack, M., Madan, A., Powell, M., and Matsuda, A., (Mat. Res. Soc. Proc. 420, Pittsburgh, 1996), pp. 697702.Google Scholar
2. Gao, W., Main, C., Brüggemann, R., Zollondz, J.-H., Gibson, R.A.G., J. Non-Cryst. Sol. 198–200, 1221 (1996).Google Scholar
3. Fonash, S. J., Hou, J., Rubinelli, F. A., Bennett, M., Wiedeman, S., Yang, L., Newton, J., Optical Engineering 33, 2065 (1994).Google Scholar
4. Chatterjee, P., J. Appl. Phys. 75, 1093 (1994).Google Scholar
5. Mittiga, A., in Amorphous Silicon Technology - 1995, ed. Hack, M., Schiff, E. A., Madan, A., Powell, M., and Matsuda, A., (Mat. Res. Soc. Proc. 337, Pittsburgh, 1995), pp. 657662.Google Scholar
6. Gao, W., Thesis, University of Abertay Dundee (1995).Google Scholar
7. Abel, C.-D., Paes, H. R., Bauer, G.H., in Amorphous Silicon Technology-1991, ed. Thompson, M.J. et al. (Mat. Res. Soc. Proc. 219, Pittsburgh, 1991), pp. 851857.Google Scholar
8. Zollondz, J.-H., Thesis, Carl von Ossietzky Universität Oldenburg (1995).Google Scholar