Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T18:38:03.219Z Has data issue: false hasContentIssue false

Continuous Multi-exponential Method for Analyzing Transient Photoconductivity in Amorphous Oxide Semiconductors

Published online by Cambridge University Press:  15 April 2015

Jiajun Luo
Affiliation:
Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60201, U.S.A.
Matthew Grayson
Affiliation:
Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60201, U.S.A.
Get access

Abstract

Amorphous oxide semiconductors (AOS) are promising candidate materials for thin film transistors in display devices, but one major challenge for mass application is their instability under illumination. In this work, a theoretical method for analyzing transient photoconductivity response in such AOS thin films is reviewed, namely the continuous multi-exponential model. This model can deduce a continuous distribution of decay time constants representing activation energy levels in an AOS, and is shown to reliably reproduce a model of density of states (DOS) of mid-gap traps assumed to be responsible for the transient photoconductivity. Provided the data collection time is sufficiently long, the continuous multi-exponential model was verified to reconstruct the modeled continuous DOS spectrum, thus providing a powerful tool to analyze photoresponse in AOS. This method has the advantage that no prior assumptions about the form of the density of states are needed, but the drawback that long data collection times are required for the transient to be fully relaxed.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., and Hosono, H., Nature 432, 488492 (2004).CrossRefGoogle Scholar
Yabuta, H., Sano, M., Abe, K., Aiba, T., Den, T., Kumomi, H., Nomura, K., Kamiya, T., and Hosono, H., Appl. Phys. Lett. 89, 112123 (2006).CrossRefGoogle Scholar
Fortunato, E., Barquinha, P., and Martins, R., Adv. Mater. 24, 29452986 (2012).CrossRefGoogle Scholar
Hosono, H., J. Non-Cryst. Solids 352, 851858 (2006).CrossRefGoogle Scholar
Hayashi, R., Ofuji, M., Kaji, N., Takahashi, K., Abe, K., Yabuta, H., Sano, M., Kumomi, H., Nomura, K., Kamiya, T., Hirano, M., and Hosono, H., J. Soc. Inf. Disp. 15, 915 (2007).CrossRefGoogle Scholar
Kim, M. G., Kanatzidis, M. G., Facchetti, A., and Marks, T. J., Nat. Mater. 10, 382388 (2011).CrossRefGoogle Scholar
Luo, J., Adler, A. U., Mason, T., Buchholz, D. B., Chang, R.P.H., and Grayson, M., J. Appl. Phys. 113, 153709 (2013).CrossRefGoogle Scholar
Lee, D. H., Kawamura, K.-i., Nomura, K., Kamiya, T., and Hosono, H., Electrochem. Solid-State Lett. 13, H324 (2010).CrossRefGoogle Scholar
Kamiya, T., and Hosono, H., NPG Asia Mater. 2, 15 (2010).CrossRefGoogle Scholar
Hossain Chowdhury, M. D., Migliorato, P., and Jang, J., Appl. Phys. Lett. 102, (2013).CrossRefGoogle Scholar
Flewitt, A. J. and Powell, M. J., J. Appl. Phys. 115, 134501 (2014).CrossRefGoogle Scholar
Studenikin, S. A., Golego, N., and Cocivera, M., Semicond. Sci. Technol. 13, 1383 (1998).CrossRefGoogle Scholar
Nagase, T., Kishimoto, K., and Naito, H., J. Appl. Phys. 86, 5026 (1999).CrossRefGoogle Scholar
Studenikin, S. A., Golego, N., and Cocivera, M., J. Appl. Phys. 83, 2104 (1998).CrossRefGoogle Scholar
Park, H. R., Liu, J. Z., & Wagner, S., Appl. Phys. Lett. 55, 2658 (1989).CrossRefGoogle Scholar
Ghaffarzadeh, K., Nathan, A., Robertson, J., Kim, S., Jeon, S., Kim, C., Chung, U.-I., and Lee, J.-H., Appl. Phys. Lett. 97, 143510 (2010).CrossRefGoogle Scholar
Luo, J., Buchholz, D. B., Chang, R. P. H., Adler, A. U., Mason, T. O., Smith, J., Yu, X., Marks, T. J. and Grayson, M., in preparation .Google Scholar
Deane, S., Wehrspohn, R., and Powell, M., Phys. Rev. B 58, 12625 (1998).CrossRefGoogle Scholar