Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-19T23:26:59.234Z Has data issue: false hasContentIssue false

Control of Ferroelectric Properties of PbZrxTi1−xO3 Thin Film for Electron Emission Device Driven by Low Voltage

Published online by Cambridge University Press:  10 February 2011

Y. Yamagata
Affiliation:
Dept. of Electrical and Computer Engineering, Kumamoto Univ., Kumamoto 860-8555, JAPAN
M. Yamazato
Affiliation:
Dept. of Electrical and Computer Engineering, Kumamoto Univ., Kumamoto 860-8555, JAPAN
T. Ikegami
Affiliation:
Dept. of Electrical and Computer Engineering, Kumamoto Univ., Kumamoto 860-8555, JAPAN
K. Ebihara
Affiliation:
Dept. of Electrical and Computer Engineering, Kumamoto Univ., Kumamoto 860-8555, JAPAN
J. Narayan
Affiliation:
Dept. of Materials Science and Engineering, North Carolina State University, 2147 Burlington Labs., Raleigh, NC 27695-7916
A.M. Grishin
Affiliation:
Dept. of Condensed Matter Physics, Royal Inst. of Technology, S-100 44 Stockholm, Sweden
Get access

Abstract

Epitaxial PbZr0.52TiO0.48O3/YBa2Cu3O7−x heterostructures on Nd:YAlO3 and MgO substrates were fabricated by KrF pulsed laser deposition. The coercive electric field of the PZT films increased with decrease of the film thickness from 1.2 μm to 0.04 μm, while the magnitude of spontaneous polarization was almost constant in this thickness range. It was found that the dependence of the film thickness d on the coercive electric field Ec was Ecæ d−2/3. This results from that the PZT/YBCO heterostructure has the one dimensional ferroelectric domain growth without non-ferroelectric phase. The polarization of AuIPZT/YBCO/(MgO or YAlO) capacitors can be changed by the applied voltage below 5 V.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Auciello, O., Ray, M. A., Palmer, D., Duarte, J., McGuire, G. E., and Temple, D., Appl. Phys. Lett. 66, 2183 (1995).Google Scholar
2. Kuratani, Y., Omura, S., Okuyama, M., and Hamakawa, Y., Jpn. J. Appl. Phys. 32, 5471 (1995).Google Scholar
3. Rosenman, G., Shur, D., and Skilar, A., J. Appl. Phys., 79, 7401 (1996).Google Scholar
4. Rosenman, G., Shur, D., Garb, Kh., Cohen, R., and Krasik, Ya. E., J. Appi. Phys., 82, 772 (1997).Google Scholar
5. Grishin, A. M., Yamazato, M., Yamagata, Y., and Ebihara, K., Appl. Phys. Lett. 72, 620 (1998).Google Scholar
6. Ebihara, K., Shingai, K., Yamagata, Y., Ikegami, T., and Grishin, A. M., J. Alloys and Compounds, 251, 228 (1998).Google Scholar
7. Yamazato, M., Grishin, A. M., Yamagata, Y., Ikegami, T. and Ebihara, K., in Advances in Laser Ablation of Materials, edited by Singh, R. K., Lowndes, D. H., Chrisey, D. B., Fogarassy, E., and Narayan, J. (Mater. Res. Soc. Proc. 526, San Francisco, CA 1998), pp. 187191.Google Scholar
8. Ebihara, K., Kurogi, H., Yamagata, Y., Ikegami, T., and Grishin, A. M., in Advances in Laser Ablation of Materials, edited by Singh, R. K., Lowndes, D. H., Chrisey, D. B., Fogarassy, E., and Narayan, J. (Mater. Res. Soc. Proc. 526, San Francisco, CA 1998), pp. 193198.Google Scholar
9. Kurogi, H., Yamagata, Y., Ebihara, K., and Inoue, N., Surface and Coatings Technology, 100/101, 424 (1998).Google Scholar
10. Kurogi, H., Yamagata, Y., Ikegami, T., and Ebihara, K., Trans. IEEE of Japan, 117–A, 873 (1997) (in Japanese).Google Scholar
11. Yamazato, M., Grishin, A. M., Yamagata, Y., Ikegami, T. and Ebihara, K., Trans. IEEE of Japan, (in Press, in Japanese).Google Scholar
12. Björmander, C., Sreenivas, K., Duan, M., Grishin, A. M. and Rao, K. V., Appl. Phys. Lett. 66, 2493 (1995).Google Scholar
13. Kay, H. F. and Dunn, J. W., Philos. Mag. 7, 2027 (1962)Google Scholar
14. Larsen, P. K., Dormans, G. J. M., Taylor, D. J., and Veldhoven, P. J. van, J. Appl. Phys., 76, 2405 (1994).Google Scholar