Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-22T19:24:23.376Z Has data issue: false hasContentIssue false

Control of Texture During Vapor Deposition of Al on (111) Si

Published online by Cambridge University Press:  25 February 2011

N. Thangaraj
Affiliation:
National Center for Electron Microscopy, MSD, Lawrence Berkeley Laboratory, University of California, Berkeley, Ca. 94720
J. Reyes-Gasga
Affiliation:
Instituto de Fisica, University of Mexico, A.P 20–364, 01000 Mexico D.F., MEXICO
K.H. Westmacott
Affiliation:
National Center for Electron Microscopy, MSD, Lawrence Berkeley Laboratory, University of California, Berkeley, Ca. 94720
U. Dahmen
Affiliation:
National Center for Electron Microscopy, MSD, Lawrence Berkeley Laboratory, University of California, Berkeley, Ca. 94720
Get access

Abstract

The growth of Al on (111) Si single crystal substrates by various techniques usually leads to films with (111) texture, sometimes with a small (100) component. Using X-ray diffraction and electron microscopy, the present study shows that the (100) texture component can be enhanced to the point of forming an oriented (100) continuous tricrystal structure. The formation of this texture is shown to be related the presence of Cu. It is concluded that an understanding of heteroepitaxy must take into account the effect of chemistry in addition to the crystallographic criteria of lattice matching.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vossen, J.L., J. Vac. Sci. Technol. 19, 761 (1981)CrossRefGoogle Scholar
2. Yamada, I., Usui, H., Inokawa, H. and Takagi, T., Surf. Sci. 168, 365 (1986)CrossRefGoogle Scholar
3. LeGoues, F.K., Krakow, W. and Ho, P.S., Phil. Mag. A, 53, 833 (1986)CrossRefGoogle Scholar
4. Dahmen, U. and Westmacott, K.H., MRS Proc. Structure/Property Relationships for Metal/Metal Interfaces, Spring (1991), submittedGoogle Scholar
5. Balluffi, R.W., Brokman, A. and King, A.H., Acta Met. 30, 1453 (1982)CrossRefGoogle Scholar
6. Zur, A. and McGill, T.C., J. Appl. Phys. 55, 378 (1984)CrossRefGoogle Scholar
7. Yapsir, A.S., Choi, C.-H. and Lu, T.-M., J. Appl. Phys. 67, 796 (1990)CrossRefGoogle Scholar
8. Thermophysical Properties of Matter, vols 12&13, eds Touloukian, Y.S. et al. , IFI/Plenum, New York (1975&1977), pp 2&154 Google Scholar
9. Bravman, J.C. and Sinclair, R., J. Electron Microsc. Technique 1, 53 (1984)CrossRefGoogle Scholar
10. Bai, P., Yang, G-R., Lu, T-M and Knorr, D.B., J. Mater. Res. 5, 989 (1990)CrossRefGoogle Scholar
11. Williams, E.D. and Bartelt, S.C., Ultramicr. 31, 36 (1989)CrossRefGoogle Scholar
12. Yang, Y. and Williams, E.D., Surf. Sci. 215, 102 (1989)CrossRefGoogle Scholar