Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-18T16:19:41.590Z Has data issue: false hasContentIssue false

Controlled Modifications in the Electrical Properties of Metal/GaAs Junctions

Published online by Cambridge University Press:  25 February 2011

M. Eizenberg*
Affiliation:
Dept. of Materials Engineering and Solid State Institute, Technion-Israel Institute of Technology, Haifa, Israel.
Get access

Abstract

Controlled modifications in the electrical properties of metal/GaAs junctions were obtaind by a few different approaches. The first approach is based on modifications induced by solid state reactions occurring between the metal and GaAs substrate, resulting in compound formation and component redistribution. The characteristics of such contacts can further be modified when the contact metal is alloyed with another metal or with a dopant. The second approach is based on modifying the doping level of the near surface region of the GaAs. Here an enhancement of the barrier height was obtained by heavily counter doping the top GaAs region by recoil implantation of Mg from a Mg thin film irradiated by As ions. The correlations between the electrical properties of the junctions and the physical processes taking place using the above mentioned approaches are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sze, S.M., Physics of Semiconductor Devices, (Wiley, New York, 1981)Google Scholar
2. See e.g. Spicer, W.E., Lindau, I., Skeath, P.R., Su, C.Y., and Chye, P., Phys. Rev. Lett. 44, 420 (1980);CrossRefGoogle Scholar
Brillson, L.J., J. Vac. Sci. Technol. 15. 1378 (1978);Google Scholar
Woodall, J.M. and Freeouf, J.L., J. Vac. Sci.Technol. 21, 574 (1982);Google Scholar
Zunger, A., Thin Solid Films 104, 310 (1983);Google Scholar
Tersoff, J., Phys. Rev. Lett. 52, 465 (1984).Google Scholar
3. Palmstrom, C.J. and Morgan, D.V., in Gallium Arsenide: Materials, Devices and Circuits, edited by Howes, M.J. and Morgan, D.V. (Wiley, New York, 1985).Google Scholar
4. Eizenberg, M., Callegari, A.C., Sadana, D.K., Hovel, H.J., and Jackson, T.N., Appl. Phys. Lett. 54, 1696 (1989).Google Scholar
5. Shanon, J.M., Solid State Electron. 19, 537 (1976).Google Scholar
6. Stanchina, W.E., Clark, M.D., Vaidyanathan, K.V., Jullens, R.A., and Crowell, C.P., J. Electrochem. Soc. 134, 967 (1987).CrossRefGoogle Scholar
7. Lahav, A., Eizenberg, M., and Komem, Y., J. Appl. Phys. 60, 991 (1986).Google Scholar
8. Lahav, A., Eizenberg, M., and Komem, Y., J. Appl. Phys. 62, 1768 (1987).Google Scholar
9. Genut, M. and Eizenberg, M., Appl. Phys. Lett. 50, 1358 (1987).Google Scholar
10. Genut, M. and Eizenberg, M., J. Appl. Phys, 66, 5456 (1989).Google Scholar
11. Norde, H., J. Appl. Phys. 50, 5052 (1979).Google Scholar
12. Shiau, F.Y., Chang, Y.A. and Chen, L.J., J. Electronic Materials, 17, 433 (1988).CrossRefGoogle Scholar
13. Lahav, A., Eizenberg, M., and Komem, Y. in Layered Structures-Epitaxy and Interfaces, edited by Gibson, J.M. and Dawson, L.R., (Mater. Res. Soc. Symp. Proc. 37, Pittsburgh, PA 1985) pp. 641646.Google Scholar
14. Sands, T., Keramidas, V.G., Washburn, J., and Gronsky, R., Appl. Phys. Lett. 48, 402 (1986).Google Scholar
15. Chen, S.M., Carter, C.B., Palmstrom, C.J., and Ohashi, T. in Thin Films - Interfaces and Phenomena, edited by Nemanich, P.J., Ho, P.S. and Lau, S.S., (Mater. Res. Soc. Symp. Proc. 54, Pittsburgh, PA 1986) pp. 361366.Google Scholar
16. Palmstrom, C.J., Fimland, B,-O., Sands, T., Garrison, K.C., and Bartynski, R.A., J. Appl. Phys. 65, 4753 (1989).CrossRefGoogle Scholar
17. Lahav, A. and Eizenberg, M., Appl. Phys. Lett. 45, 256 (1984).Google Scholar
18. Lahav, A. and Eizenberg, M., Appl. Phys. Lett. 46, 430 (1985).Google Scholar
19. Genut, M. and Eizenberg, M., Appl. Phys. Lett. 53, 672 (1988).CrossRefGoogle Scholar
20. Genut, M. and Eizenberg, M., J. Appl. Phys., in press.Google Scholar
21. Sands, T., Materials Science and Engineering B1, 289 (1989).Google Scholar
22. Kuan, T.S., Batson, P.E., Jackson, T.N., Rupprecht, H., and Wilkie, E.L., J. Appl. Phys. 54, 6852 (1983).Google Scholar
23. Wang, L.C., Zhang, B., Fang, F., Marshall, E.D., Lau, S.S., Sands, T., and Kuech, T.F., J. Mater. Res. 3, 922 (1988).CrossRefGoogle Scholar
24. Marshall, E.D., Chen, W.X., Wu, C.S., Lau, S.S., and Kuech, T.F., Appl. Phys. lett. 47, 298 (1985).Google Scholar
25. Marshal, E.D., Zhang, B., Wang, L.C., Jiao, P.F., Chen, W.X., Sawada, T., Lau, S.S., Kavanaugh, K.L., and Kuech, T.F., J. Appl. Phys. 62, 942 (1987).CrossRefGoogle Scholar