Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-20T11:14:00.517Z Has data issue: false hasContentIssue false

Controlling Porosity in Bridged Polysilsesquioxanes through Elimination Reactions

Published online by Cambridge University Press:  10 February 2011

Mark D. McClaint
Affiliation:
Org. 1812, Sandia National Laboratories, Albuquerque, NM 87185-1407
Douglas A. Loy
Affiliation:
Org. 1812, Sandia National Laboratories, Albuquerque, NM 87185-1407
Sheshasayana Prabakart
Affiliation:
Advanced Materials Laboratory, University of New Mexico, Albuquerque, NM 87106
Get access

Abstract

The retro Diels-Alder reaction was used to modify porosity in hydrocarbon-bridged polysilsesquioxane gels. Microporous polysilsesquioxanes incorporating a thermally labile Diels-Alder adduct as the hydrocarbon bridging group were prepared by sol-gel polymerization of trans-2, 3-bis(triethoxysilyl)norbornene. Upon heating the 2, 3-norbornenylene-bridged polymers at temperatures above 250°C, the norbornenylene-bridging group underwent a retro Diels-Alder reaction losing cyclopentadiene and leaving behind a ethenylene-bridged polysilsesquioxane. Less than theoretical quantities of cyclopentadiene were volatilized indicating that some of the diene was either reacting with the silanol and olefinic rich material or undergoing oligomerization. Both scanning electron microscopy and nitrogen sorption porosimetry revealed net coarsening of pores (and reduction of surface area) in the materials with thermolysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Loy, D.A., Shea, K.J., Chem. Rev. 95, 1431 (1995).Google Scholar
2. Shea, K.J., Loy, D.A., Webster, O., J. Am. Chem. Soc. 114, 6700 (1992).Google Scholar
3. Small, J.H., Shea, K.J., Loy, D.A., J. Non-Cryst. Solids 160, 234 (1993).Google Scholar
4. Oviatt, H.W. Jr., Shea, K.J., Small, J.H., Chem. Mater. 5, 943 (1993).Google Scholar
5. Loy, D.A., Jamison, G.M., Assink, R.A., Myers, S., Shea, K.J., ACS Symp. Ser. 585, 264 (1995).Google Scholar
6. Corriu, R.J.P., Moreau, J.J.E., Thepot, P., Man, M.W.C., J. Mater. Chem. 4, 987 (1994).Google Scholar
7. Brinker, C.J., Sehgal, R., Hietala, S.L., Deshpande, R., Smith, D.M., Loy, D., Ashley, C.S., J. Membr. Sci. 94, 85 (1994).Google Scholar
8. Loy, D.A., Shea, K.J., Buss, R., ACS Symp. Ser. 572, 122 (1994).Google Scholar
9. Marciniec, B., Maciejewski, H., Gulinski, J., Rzejak, J. Organomet. Chem. 362, 273 (1989).Google Scholar
10. Loy, D.A., Ph.D. Thesis, University of California, Irvine, 1991.Google Scholar
11. Ruedinger, C., Beruda, H., Schmidbaur, H., Z. Naturforsch., B: Chem. Sci. 49, 1348 (1994).Google Scholar
12. Sheludyakov, V.D., Zhun, V.I., Lakhtin, V.G., Bochkarev, V.N., Slyusarenko, T.F., Nosova, V.N., Kisin, A.V., Zh. Obshch. Khim. 54, 640 (1984).Google Scholar
13. Sheludyakov, V.D., Zhun, V.I., Lakhtin, V.G., Shcherbinin, V.V., Chernyshev, E.A., Zh. Obshch. Khim. 53, 1192 (1983).Google Scholar
14. Sheludyakov, V.D., Lakhtin, V.G., Zhun, V.I., Shcherbinin, V.V., Chernyshev, E.A., Zh. Obshch. Khim. 51, 1829 (1981).Google Scholar
15, Carpenter, J.P., Yamanaka, S.A., McClain, M.D., Loy, D.A., Greaves, J., Hobson, S., Shea, K.J., Chem. Mater. , submitted for publicationGoogle Scholar
16. A mass spectrometric study has concluded that the slow gelation for acid catalyzed polymerization of 1 results from much slower intermolecular condensation reactions due to the unfavorable steric interactions between norbornenylene groups: McClain, M. D., Loy, D. A., Prabakar, S., Greaves, J., Shea, K. J., to be published.Google Scholar
17. Loy, D.A., Jamison, G.M., Baugher, B.M., Russick, E.M., Assink, R.A., Prabakar, S., Shea, K.J.,J. Non Cryst. Solids 186, 44 (1995).Google Scholar
18. Due to the formation of carbides, elemental analyses were generally low in carbon, even with higher analysis temperature and the addition of combustion aid.Google Scholar