Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-18T11:21:14.998Z Has data issue: false hasContentIssue false

Convection Effects in Three-Dimensional Dendritic Growth

Published online by Cambridge University Press:  17 March 2011

Yili Lu
Affiliation:
Department of Mechanical and Industrial Engineering, University of Iowa, Iowa City, IA 52242-1527, U.S.A.
C. Beckermann
Affiliation:
Department of Mechanical and Industrial Engineering, University of Iowa, Iowa City, IA 52242-1527, U.S.A.
A. Karma
Affiliation:
Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA 02115, U.S.A.
Get access

Abstract

A phase-field model is developed to simulate free dendritic growth coupled with fluid flow for a pure material in three dimensions. The preliminary results presented here illustrate the strong influence of convection on the three-dimensional (3D) dendrite growth morphology. The knowledge of the flow and temperature fields in the melt from the simulations allows for a detailed understanding of the convection effects on dendritic growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tiller, W. A., Jackson, K. A., Rutter, J. W. and Chalmers, B., Acta Metall. 1, 428(1953).Google Scholar
2. Mullins, W. W. and Sekerka, R. F., J. Appl. Phys. 34, 323 (1963); 35, 444 (1964).Google Scholar
3. Glicksman, M. E., Schaefer, R. J. and Ayers, J. D., Metall. Trans. A 7, 1747 (1976).Google Scholar
4. Glicksman, M. E. and Singh, N. B., J. Cryst. Growth 98, 277 (1989).Google Scholar
5. Trivedi, R., Acta. Metall. 18, 287 (1970); J. Cryst. Growth 49, 1037 (1980).Google Scholar
6. McFadden, G. B., Wheeler, A. A., Braun, R. J., Coriell, S. R. and Sekerka, R. F., Phys. Rev. E 48, 2016 (1993).Google Scholar
7. Oldfield, W., Mater. Sci. Eng. 11, 211 (1973).Google Scholar
8. Langer, J. S. and Muller-Krumbhaar, H., Acta Metall. 26, 1681 (1978).Google Scholar
9. Ivantsov, G. P., Dokl. Akad. Nauk SSSR 58, 567 (1947).Google Scholar
10. Kessler, D. A., Koplik, J. and Levine, H., Adv. in Phys. 37(2), 255 (1988).Google Scholar
11. Fix, G. J., in Free Boundary Problems: Theory and Application, Vol. II, edited by Fasano, A. and Primicerio, M., (Piman, Boston, 1983) pg. 580.Google Scholar
12. Collins, J. B. and Levine, H., Phys. Rev. B 31, 6119 (1985).Google Scholar
13. Kobayashi, R., Physica D 63, 410 (1993).Google Scholar
14. Murray, B. T., Wheeler, A. A. and Glicksman, M. E., J. Cryst. Growt 47, 386 (1995).Google Scholar
15. Sethian, J. A. and Strain, J., J. Comp. Phys. 18, 2313 (1992).Google Scholar
16. Almgren, R., J. Comp. Phys. 106, 337 (1993).Google Scholar
17. Roosen, A. R. and Taylor, J. E., J. Comp. Phys. 114, 113 (1994).Google Scholar
18. Karma, A. and Rappel, W. J., Phys. Rev. E 53, 3017 (1996); 60(4), 3614 (1999); 57(4), 4323 (1998).Google Scholar
19. Beckermann, C., Diepers, H. J., Steinbach, I., Karma, A. and Tong, X., J. Comp. Phys. 154, 468 (1999).Google Scholar
20. Jeong, J. H., Goldenfeld, N. and Dantzig, J. A., Phys. Rev. E 64:041602 (2001).Google Scholar
21. http://www.featflow.deGoogle Scholar
22. Lange, C. F., Durst, F. and Breuer, M., Int. J. of Heat and Mass Transfer 41, 3409 (1998).Google Scholar
23. Tritton, D. J., J. Fluid Mechanics 6, 547 (1959).Google Scholar
24. Huner, B. and Hussey, R. G., Physics of Fluids 20(8), 1211 (1977).Google Scholar