Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-23T03:23:51.387Z Has data issue: false hasContentIssue false

Core and Valence Levels in Hydrogemated Amorphous Silicon

Published online by Cambridge University Press:  26 February 2011

N. A. Burnhara
Affiliation:
Solar Energy Research Institute, Golden, CO 80401
R. F. Fisher
Affiliation:
Solar Energy Research Institute, Golden, CO 80401
S. E. Asher
Affiliation:
Solar Energy Research Institute, Golden, CO 80401
L. L. Kazmerski
Affiliation:
Solar Energy Research Institute, Golden, CO 80401
G. Lucovsky
Affiliation:
North Carolina State University, Raleigh, NC 27650
G. N. Parsons
Affiliation:
North Carolina State University, Raleigh, NC 27650
Get access

Abstract

Silicon core and valence levels were studied in hydrogenated amorphous silicon (a-Si:H) as a function of hydrogen concentration. The techniques used to establish the core levels were X-ray Photoelectron Spectroscopy and core-level Electron Energy Loss Spectroscopy. Changes in the local densities of states of the silicon 3s and 3p levels were examined with Auger Electron Spectroscopy. The a-Si:H samples were grown by RF sputtering. Their hydrogen concentrations varied from zero to nearly fifteen percent.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kramer, B., King, H. and MacKinnon, A., J. Non-Cryst. Solids. 59 & 60, 73 (1983); Physica 117B & 118B, 944 (1983).Google Scholar
2. Lucovsky, G., J. Phys. C4, 741 (1981).Google Scholar
3. Marschall, N., Fischer, B., and Queisser, H.J., Phys. Rev. Lett. 27, 95 (1971).Google Scholar
4. Knights, J.C. and Lucovsky, G., CRC Critical Reviews in Solid State and Materials Science, V. 9, p. 211, (1980).Google Scholar
5. Madden, H.H., Surf. Sci. 105, 129 (1981).Google Scholar
6. Madden, H.H., J. Vac. Sci. Technol., A 2, 1201 (1983).Google Scholar
7. Madden, H.H., J. Vac. Sci. Technol. A 2, 961 (1984).Google Scholar
8. Zajac, G. and Bader, S.D., Phys. Rev. B 26, 5688 (1982).CrossRefGoogle Scholar
9. Guttman, L. and Fong, C.Y., Phys. Rev. B 26, 6756 (1982).Google Scholar
10. Madden, H.H., Jennison, D.R., Trawm, M.M., Margaritondo, G. and Stoffel, N.G., Phys. Rev. B 26, 896 (1982).CrossRefGoogle Scholar
11. Merzbacher, E., Quantum Mechanics, (John Wiley and Sons, New York, 1970), p. 480.Google Scholar
12. Jennison, D.R., Phys. Rev. B 18, 6865 (1978).Google Scholar
13. Ching, W.Y., Lam, D.J., and Lin, C.C., Phys. Rev. B 21, 2378 (1980).Google Scholar
14. Nelson, A.J., Burnham, N.A., Swartzlander, A.B., Asher, S.E., and Kazmerski, L.L., J. Vac. Sci. Technol. Al, 1570 (1986).Google Scholar
15. von Roedern, B., Ley, L., and Cardona, M., Phys. Rev. Lett. 39, 1576 (1977).CrossRefGoogle Scholar
16. Ewald, D., Milleville, M., and Weiser, G., Phil. Mag. 40, 291 (1979).Google Scholar
17. Usami, K., Shimada, T., and Katayama, Y., Jap. J. Appl. Phys. 19, L389 (1980).Google Scholar
18. Ley, L., Reichardt, J. and Johnson, R.L., Phys. Rev. Lett. 49, 1664 (1982).CrossRefGoogle Scholar
19. Gruntz, K.J., Ley, L., and Johnson, R.L., Phys. Rev. B24, 2069 (1981).Google Scholar
20. Das, S.R., Webb, J.B., deCastro, S.C., and Sundaram, V.S., J. Appl. Phys. 60, 2530 (1986).Google Scholar