Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-16T02:45:24.306Z Has data issue: false hasContentIssue false

Critical Currents of Overdoped Co-evaporated YBCO Coated Conductors

Published online by Cambridge University Press:  17 March 2011

Jens Hänisch
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, NM, 87545
Jonathan Storer
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, NM, 87545
Chris Sheehan
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, NM, 87545
Yates Coulter
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, NM, 87545
Vladimir Matias
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, NM, 87545
Get access

Abstract

Coated conductor samples, prepared by reactive co-evaporation, are investigated with respect to the hole-doping dependence of the critical current density. The samples are annealed in an atmosphere of variable oxygen content after which critical currents, critical temperature and the c-axis lattice spacing are measured. The lattice spacing increases with decreasing oxygen content, consistent with literature data. These co-evaporated samples show hole overdoped behavior with respect to the maximum Tc. The achievable range of hole doping in these samples seems to depend on surface coverage. Both self-field and in-field Jc at 75.5 K have a maximum in the overdoped region but at less than maximum oxygen content. The reason for the overdoping of these samples is discussed briefly in terms of Y-Ba disorder.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tallon, J.L., Bernhard, C., Shaked, H., Hitterman, R.L., and Jorgensen, J.D., Phys. Rev. B 51, 12911 (1995).Google Scholar
2. Hilgenkamp, H., and Mannhart, J., Rev. Mod. Phys. 74, 485 (2002).Google Scholar
3. Strickland, N.M., Semwal, A., Williams, G.V.M., Verebelyi, D.T., and Zangh, W., Supercond. Sci. Technol. 17, S473 (2004).Google Scholar
4. Feenstra, R., Christen, D.K., Klabunde, C.E., and Budai, J.D., Phys. Rev. B 45, 7555 (1992).Google Scholar
5. Matijasevic, V., Lu, Z., Kaplan, T., Huang, C., Inst. of Phys. Conf. Series 158, 189 (1997).Google Scholar
6. Nemetschek, R., Prusseit, W., Holzapfel, B., Eickemeyer, J., DeBoer, B., Miller, U., Maher, E., Phys. C 372–376, 880 (2002).Google Scholar
7. Lee, B. S., Chung, K. C., Kim, S. M., Kim, H. J., Youm, D., Park, C., Supercond. Sci. Technol. 17, 580 (2004).Google Scholar
8. Storer, J., Hänisch, J., Sheehan, C., and Matias, V., these proceedings.Google Scholar
9. Ye, J., and Nakamura, K., Phys. Rev. B 48, 7443 (1993).Google Scholar
10. Kittelberger, S., Bolz, U., Huebener, R.P., Holzapfel, B., and Mex, L., Phys. C 302, 93 (1998).Google Scholar
11. Matijasevic, V., Rosenthal, P., Shinohara, K., Marshall, A.F., Hammond, R.H., J. Mater. Res. 6, 682 (1991).Google Scholar