Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-22T15:51:24.288Z Has data issue: false hasContentIssue false

Critical Materials Parameters for the Development of Amorphous Silicon Alloys

Published online by Cambridge University Press:  28 February 2011

Stanford R. Ovshinsky
Affiliation:
Energy Conversion Devices, Inc., 1675 West Maple Road, Troy, MI 48084
David Adler
Affiliation:
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

The desired properties of solar cells are discussed, and a relative figure of merit for the comparison of cells fabricated using different technologies is described. The advantages of utilizing amorphous silicon alloys as the active material in solar cells are enumerated. Selected materials properties of these alloys are described and the physics of their electronic structure is discussed in detail. The necessary steps for achieving commercially viable cells based on amorphous silicon alloys are listed, and it is demonstrated how each of them has been achieved using a technology that incorporates fluorine throughout the entire process. The chemical and physical basis for the superiority of fluorinated material is presented in detail. Continuous web large-area high-efficiency multijunction solar cells are in production. Dual band gap multijunction cells have been tested under continuous air mass 1 exposure for over 2000 hours and show essentially no degradation. Some recent results are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.See Adler, D. and Ovshinsky, S.R., Chemtech, in press for a recent review.Google Scholar
2. Armstrong-Russell, M.K., Freedman, W., and Spittes, E.E., S.P.I.E. Proc. 407, 132 (1983).Google Scholar
3. Ovshinsky, S.R., Tech. Digest Intern. PVSEC-I, (Kobe, Japan, 1984) p. 577. (As presented.)Google Scholar
4. Hudgens, S.J. and Johncock, A.G., these proceedings.Google Scholar
5. Adler, D., in Physical Properties of Amorphous Materials, ed. by Adler, D., Schwartz, B.B., and Steele, M.C. (Plenum Press, N.Y., 1985), p.5.Google Scholar
6. Ovshinsky, S.R., in Physical Properties of Amorphous Materials, ed. by Adler, D., Schwartz, B.B., and Steele, M.C. (Plenum Press, N.Y, 1985), p. 105.Google Scholar
7. Ovshinsky, S.R., A.I.P. Conf. Proc. 31, 67 (1976).Google Scholar
8. Ovshinsky, S.R. and Adler, D., Contemp. Phys. 19, 109 (1978).Google Scholar
9. Paul, W., Paul, D.K., Roedern, B. von, Blake, J., and Oguz, S., Phys. Rev. Lett. 46, 1016 (1981).CrossRefGoogle Scholar
10. RFTmer, J.A., Scott, B.A., Wolford, D.J., and Nijs, J., Appl. Phys. Lett. 46, 369 (1985).Google Scholar
11. Johnson, C.H., Kolasi, H.J., deNeufville, J.P., and Morel, D.L., Phys. Rev. B 21, 643 (1980).CrossRefGoogle Scholar
12. Tiedje, T., in Semiconductors and Semimetals, ed. by Willardson, R.K. and Beer, A.C. (Academic Press, N.Y., 1984), vol. 21C, p. 207.Google Scholar
13. Ovshinsky, S.R., in Amorphous and Liquid Semiconductors, ed. by Spear, W.E. (C.I.C.L., U. of Edinburgh, 1977) p. 519.Google Scholar
14. Dersch, H., Stuke, J., and Beichler, J., Phys. Stat. Sol. B 105, 265 (1981).Google Scholar
15. Staebler, D.L. and Wronski, C.R., J. Appl. Phys. 51, 3262 (1980).Google Scholar
16. Tsai, C.C., Knights, J.C., and Thompson, M.J., J. Non-Cryst. Solids 66, 45 (1984).Google Scholar
17. Guha, S., Yang, J., Czubatyj, W., Hudgens, S.J., and Hack, M., Appl. Phys. Lett. 42, 5881 (1983).Google Scholar
18. Tanner, D.P. and Mitchell, K.W., Tech. Digest. Intern. PVSEC-l, (Kobe, Japan, 1984), p. 405. Y. Uchida, M. Kamiyama, Y. Ichikawa, T. Hama, and H. Sakai, p. 217.Google Scholar
19. Ovshinsky, S.R. and Sapru, K., in Amorphous and Liquid Semiconductors, ed. by Stuke, J. and Brenig, W. (Taylor and Francis, London, 1974) p. 447.Google Scholar
20. Guha, S., unpublished data.Google Scholar
21. Doehler, J., unpublished data.Google Scholar
22. Izu, M. and Hoffman, K., unpublished data.Google Scholar
23. Nath, P., unpublished data.Google Scholar
24. Yang, J., unpublished data.Google Scholar
25. Hanak, J., unpublished data.Google Scholar
26. Spear, W.E. and Comber, P.G. Le, Phil. Mag. 33, 935 (1976).Google Scholar
27. Hudgens, S.J., Phys. Rev. B 14, 1547 (1976)Google Scholar
28. Ovshinsky, S.R. and Madan, A., Nature 276, 482 (1978).Google Scholar
29. Hyun, C.H., Shur, M.S., and Madan, A., Appl. Phys. Lett. 41, 178 (1982).Google Scholar
30. Natsumura, H. and Furukawa, S., in Amorphous SemiconductZ Technologie and Devices, ed. by Hamakawa, Y. (North-Holland, N.Y., 1982), p. 88.Google Scholar
31. Kuwano, Y., Ohnishi, M.. Nishiwaki, H., Tsuda, S., Shibuya, H., and Nakano, S., in Proc. 15th IEEE Photovoltaics Specialists Conf. (1981), p. 698.Google Scholar
32. Nozawa, K., Yamaguchi, Y., Hanna, J., and Shimizu, I., J. Non-Cryst. Solids 59–60, 533 (1983).Google Scholar
33. Nakano, S., Kishi, Y., Ohnishi, M., Tsuda, S., Shibuya, H., Nakamura, N., Hishikawa, Y., Tarui, H., Takahama, Y., and Kawano, Y., these proceedings.Google Scholar
34. Ovshinsky, S.R., in Proc. of the Intern. Ion Engineering Congress, ISIAT '83 & IPAT '83 (Kyoto, Japan, 1983).Google Scholar