Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-21T20:20:24.088Z Has data issue: false hasContentIssue false

Current Status of and Recent Results on Group 2 Source Compounds for Vapor Phase Epitaxy of Ferroelectric Thin Films

Published online by Cambridge University Press:  21 February 2011

William S. Rees JR
Affiliation:
Department of Chemistry and Materials Research and Technology Center, MS: B-164, The Florida State University, Tallahassee, FL, USA, 32306-3006
Henry A. Luten
Affiliation:
Department of Chemistry and Materials Research and Technology Center, MS: B-164, The Florida State University, Tallahassee, FL, USA, 32306-3006
Michael W. Carris
Affiliation:
Department of Chemistry and Materials Research and Technology Center, MS: B-164, The Florida State University, Tallahassee, FL, USA, 32306-3006
Celia R. Caballero
Affiliation:
Department of Chemistry and Materials Research and Technology Center, MS: B-164, The Florida State University, Tallahassee, FL, USA, 32306-3006
Werner Hesse
Affiliation:
Department of Chemistry and Materials Research and Technology Center, MS: B-164, The Florida State University, Tallahassee, FL, USA, 32306-3006
Virgil L. Goedken
Affiliation:
Deceased 22 December 1992
Get access

Abstract

Much interest in the area of ferroelectric thin films has been generated by the recent developments in unique property observation for these materials. As deposition methods move toward potential commercialization, the importance of chemically and thermally stable at use temperature, high vapor pressure and purity, readily available and economically competitive sources for the requisite group 2 elements will emerge. This presentation entails an initial overview of the presently utilized compounds, their advantages and disadvantages. New group 2 CVD precursors have been developed based both on inter- and intramolecular stabilization of cyclopentadienides, alkoxides and β-diketonates. Recent results on the coordination environment around the central metal atom have offered insight into the next generation of polydentate, monoanionic ligand design. Specific details are discussed for the metal complexes of “scorpion-tail” β-diketoethers. Results of comparison studies between these new precursors and earlier compounds are presented as a model for designing future sources.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wills, L.A., Wessels, B.W., Richeson, D.S., and Marks, T.J., Appl. Phys. Lett. 60, 41 (1992).Google Scholar
2. Buskirk, P.C., Gardiner, R., and Kirlin, P.S., J. Mater. Res. 7, 542 (1992).CrossRefGoogle Scholar
3. Stringfellow, G.B., Organometallic Vapor-Phase Epitaxy: Theory and Practice (Academic, New York, 1989).Google Scholar
4. fod (7, 7 - dimethyl - 1, 1, 1, 2, 2, 3, 3 - heptafluorooctane - 4, 6 - dionato) = (CH3)3CCOCHCOCF2CF2CF3.Google Scholar
5. (a) hfac (1, 1, 1, 5,5, 5 - hexafluoropentane - 2,4 - dionato) = CF3COCHCOCF3 -; (b) tetraglyme (tetraethyleneglycol dimethylether) = CH3(OCH2CH2)4OCH3.Google Scholar
6. (a) Timmer, K., Spee, K., Mackor, A., Meinema, H.A., Spek, A.L., and Sluis, P. van der, Inorg. Chim. Acta 190,190 (1991); (b) C.I.M.A. Spee, E.A. van der Zouwen-Assink, K. Timmer, A. Mackor, and H.A. Meinema, J. Phys. IV 1, C2, 295 (1991); (c) G. Malandrino, D.S. Richeson, T.J. Marks, D.C. DeGroot, J.L. Schindler, and C.R. Kannewurf, Appl. Phys. Lett. 58, 182 (1991); (d) J.M. Zhange, B.W. Wessels, D.S. Richeson, T.J. Marks, E.C. Degroot, and C.R. Kannewurf, J. Appl. Phys. 69, 2743 (1991); (e) S.J. Duray, D.B. Buchholz, S.N. Song, D.S. Richeson, J.B. Ketterson, T.J. Marks, and R.P.H. Chang, Appl. Phys. Lett. 59, 1503 (1991); (f) R. Gardiner, D.W. Brown, P.S. Kirlin, and A.L. Rheingold, Chem. Mater. 3,1503 (1991); (g) A.L. Spek, P. van der Sluis, K. Timmer, and H.A. Meinema, Acta Cryst. C64, 1741 (1990).CrossRefGoogle Scholar
7. (a) Rees, W.S. Jr., and Moreno, D.A., J. Chem. Soc., Chem. Commun. 1991, 1759; (b) W.S. Rees, Jr. and D.A. Moreno, in Spectroscopy and Strucuture of Molecules and Nuclei, edited by N.R. Johnson, W.N. Shelton, and M.A. EI-Sayed (World Scientific, 1992) pp. 367-374.Google Scholar
8. (a) Rees, W.S. Jr., and Dippel, K.A., in Proceedings of the International Conference on the Ultrastructure Processing of Ceramics, Glasses, Composites, Ordered Polymers, and Advanced Optical Materials (Wiley, New York, 1992) pp. 327332; (b) W.S. Rees, Jr. and K.A. Dippel, Organic Preparations and Procedures International 24, 531 (1991).Google Scholar
9. (a) Glézes, A., Sans-Lenain, S., and Méus, D., Acad, C. R.. Sci. Paris 31311, 761 (1991); (b) W.S. Rees, Jr., M.W. Carris, and W. Hesse, Inorg. Chem. 30, 1164 (1991).Google Scholar
10. (a) Rees, W.S. Jr., Hascicek, Y.S., and Testardi, L.R., in Better Ceramics Through Chemistry V. edited by Hampden-Smith, M.J., Klemperer, W.G., and Brinker, C.J. (Mater. Res. Soc. Proc. 271, San Francisco, CA, 1992) pp. 925931; (b) W.S. Rees, Jr., in Proceedings of the Fourth Florida Microelectronics and Materials Conference, edited by R. Rasmussen (University of South Florida Press, 1992) p. 83; (c) W.S. Rees, Jr. and A.R. Barron, NASA Review Series, edited by A. Hepp 1993, in press; (d) W.S. Rees, Jr. and A.R. Barron, Adv. Mater. Opt. and Elect. 1993, accepted for publication; (e) W.S. Rees, Jr., Ceramics Ind. Intl. 1993, April, pp. 22-26; (f) K. Watanabe, H. Yamane, N. Kobayashi, T. Hirai, and Y. Muto, in Studies of High Temperature Superconductors: Advances in Research and Applications, Vol. 8, edited by A. Narlikar (Nova Science Publishers, New York, 1992) pp. 107-144; (g) L.M. Tonge, D.S. Richeson, T.J. Marks, J. Zhao, J. Zhang, B.W. Wessels, H.O. Marcy, and C.R. Kannewurf, in Electron Transfer in Biology and the Solid State: Inorganic Compounds with Unusual Properties, Part III, edited by R.M. Johnson, R.B. King, D.M. Kurtz, Jr., C. Kutal, M.L. Norton; and R.A. Scott (Amer. Chem. Soc. Adv. Chem. Series 226, Washington, D. C., 1990) pp. 351-368.Google Scholar
11. (a) tmhd (2, 2, 6, 6 - tetramethylheptane - 3, 5 - dionato) = (CH3)3CCOCHCOC(CH3)3 -; (b) P.H. Dickinson, T.H. Geballe, A. Sanjurjo, D. Hildenbrand, G. Craig, M. Zisk, J. Collman, S.A. Banning, and R.E. Sievers, J. Appl. Phys. 66,444 (1989).Google Scholar
12. Matsuno, S., Uchikawa, F., and Yoshizaki, K., Jpn. J. Appl. Phys. 29L, 947 (1990).Google Scholar
13. (a) Zhao, J., Dahman, K.-H., Marcy, H.O., Tonge, L.M., Marks, T.J., Wessels, B.W., and Kannewurf, C.R., Appl. Phys. Lett. 53, 1750 (1988); (b) J. Zhao, H.O. Marcy, L.M. Tonge, T.J. Marks, B.W. Wessels, and C.R. Kannewurf, Physica C 159,710 (1989).CrossRefGoogle Scholar
14. Barron, A.R., Buriak, J.M., Chetham, L., and Gordon, R., Abstract 343 HTS, 177th Meeting of the Electrochemical Society, Montreal, Canada, 1990.Google Scholar
15. Gléizes, A., Sans-Lenain, S., Médus, D., and Morancho, R., Acad, C. R.. Sci. Paris 31211, 983 (1991).Google Scholar
16. Zanella, P., Rossetto, G., Polo, A., Benetollo, F., and Porchia, M., Polyhedron 11, 979 (1992).Google Scholar
17. (a) tmeda (N, N, N', N' - tetramethylethylenediamine) = (CH3)2NCH2CH2N(CH3)2; (b) L.G. Hubert-Pfalzgraf (personal communication).Google Scholar
18. (a) o-phen = 1, 10-phenanthroline; (b) H. Zama, K. Sakai, and S. Oda, Jpn. J. Appl. Phys. 31L, 1243 (1992).Google Scholar
19. (a) L = o-phen, bipy; (b) bipy = 2, 2'-bipyridineGoogle Scholar
20. Tumipseed, S.B., Barkley, R.M., and Sievers, R.E., Inorg. Chem. 30, 1164 (1991).Google Scholar
21. Apblett, A.W. and Barron, A.R., Organomet. 9, 2137 (1990).Google Scholar
22. Barefield, E.K. (personal communication).Google Scholar
23. (a) dmmod (2, 2 - dimethyl - 8 - methoxyoctane - 3, 5 - dionato) = (CH3)3CCOCHCOCH2CH2CH2OCH3”; (b) W.S. Rees, Jr., C.R. Caballero, and W. Hesse, Angew. Chem., Int. Ed. Engl. 31, 735 (1992).Google Scholar
24. Schulz, D.L., Hinds, B.J., Stem, C.L., and Marks, T.J., Inorg. Chem. 32, 249 (1993).Google Scholar
25. Shannon, R.D., Acta Cryst. A32, 751 (1976).CrossRefGoogle Scholar
26. Rees, W.S. Jr., Encyclo. Inorg. Chem., Vol. 2, section editor Wells, R.L., editor King, R.B. (Wiley, New York, 1993) accepted for publication.Google Scholar
27. Rees, W.S. Jr., Luten, H.A., Carris, M.W., Doskocil, E.J., and Goedken, V.L., in Better Ceramics Through Chemistry V, edited by Hampden-Smith, M.J., Klemperer, W.G., and Brinker, C.J. (Mater. Res. Soc. Proc. 271, San Francisco, CA, 1992) pp. 141147.Google Scholar
28. (a) Rees, W.S. Jr., Green, D.M., and Hesse, W., Polyhedron 11, 1667 (1992); (b) W.S. Rees, Jr., D.M. Green, T.J. Anderson, E. Bretschneider, B. Pathangey, and J. Kim, J. Electronic Mater. 21, 361 (1992); (c) W.S. Rees, Jr., T.J. Anderson, D.M. Green, and E. Bretschneider, in Wide Band-Gap Semiconductors, edited by J.I. Pankove and Y. Hamakawa (Mater. Res. Soc. Proc. 242, Pittsburgh, PA, 1992) pp. 281-286; (d) W.S. Rees, Jr., D.M. Green, T.J. Anderson, and B. Pathangey, in Chem. Persp. of Microelectr. Mater. ii, edited by C.R. Abernathy, C.W. Bates, Jr., D.A. Bohling, and W.S. Hobson (Mater. Res. Soc. Proc. 282, Pittsburgh, PA, 1993) pp. 63-67.Google Scholar
29. (a) Rees, W.S. Jr., and Caballero, C.R., in Chemical Vapor Deposition of Refractory Metals and Ceramics, edited by Besmann, T.M., Gallois, B.M., and Warren, J. ( Mater. Res. Soc. Proc. 250, Pittsburgh, PA, 1992) pp. 297301; (b) W.S. Rees, Jr. and C.R. Caballero, Adv. Mater.for Optics and Electron. 1, 59 (1992).Google Scholar