Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-20T19:23:32.354Z Has data issue: false hasContentIssue false

CVD Diamond Applications as TL Radiation Dosimeters

Published online by Cambridge University Press:  01 February 2011

M. Pedroza-Montero
Affiliation:
mpedroza@cajeme.cifus.uson.mx, Universidad de Sonora, DIFUS, P. O. Box 5-088, Hermosillo, Sonora, México, AZ, 83190, Mexico, 52 662 259 2156, 52 662 212 6649
R Melendrez
Affiliation:
rodrigo@cajeme.cifus.uson.mx, Universidad de Sonora, DIFUS, P. O. Box 5-088, Hermosillo, Sonora, México, 83190, Mexico
V Chernov
Affiliation:
chernov@cajeme.cifus.uson.mx, Universidad de Sonora, DIFUS, P. O. Box 5-088, Hermosillo, Sonora, México, 83190, Mexico
M. Pedroza-Montero
Affiliation:
mpedroza@cajeme.cifus.uson.mx, Universidad de Sonora, DIFUS, P. O. Box 5-088, Hermosillo, Sonora , México, 83190, Mexico
S Gastelum
Affiliation:
sandrag@posgrado.cifus.uson.mx, Universidad de Sonora, DIFUS, P. O. Box 5-088, Hermosillo, Sonora, México, 83190, Mexico
E Cruz-Zaragoza
Affiliation:
ecruz@nucleares.unam.mx, Universidad Autonoma de Mexico, Instituto de Ciencias Nucleares, A. P. 70-543, Mexico, DF, 04510, Mexico
Get access

Abstract

The extraordinary characteristics of chemically vapor deposited (CVD) diamond such as tissue equivalence, radiation hardness, and lack of solubility in water; makes CVD diamond a very promising material for radiation dosimetry applications. Recent investigations have shown that CVD techniques allowed the growing of good quality diamond films in a diversity of substrates to be used in the form of ionization chambers, thermoluminescence (TL) detectors and dosimeters. In the present work, we report on the TL properties of MWCVD diamond exposed to gamma radiation in the 0.05 -1.0 kGy dose range and 43.5 and 81.11 Gy min−1 dose rates. The CVD diamond displays a linear dose behavior and 5% TL cycle reproducibility, without requiring any annealing or thermal treatment before using it as TL dosimeter. In spite of the significant results, some problems remain and a lot of research work is necessary to improve the synthetic material characteristics to optimize the TL/OSL radiation dosimeter properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Benabdesselam, M., Iacconi, P., Briand, D., Butler, J. E., Diamond Relat. Mater. 9 (2000) 1013.Google Scholar
2. Mazzocchi, S., Bruzzi, M., Bucciolini, M., Cuttone, G., Pini, S., Sabini, M.G., Sciortino, S., Nucl. Instrum. Methods, A 476 (2002) 713.Google Scholar
3. Ahn, J., Gan, B., Zhang, Q., Rusli, Yoon, S.F., Ligatchev, V., Wang, S.G., Huang, Q.F., Chew, K., Meléndrez, R., Barboza-Flores, M., Int. J. Mod. Phys. B 16 (2002) 1003.Google Scholar
4. Marczewska, B., Furetta, C., Bilski, P., Olko, P., Phys. Status Solidi, A Appl. Res. 185 (2001) 183.Google Scholar
5. Pospíšil, J., Novàk, R., Sopko, B., Spìvàček, V., Hlídek, P., Matějka, P., Mackovà, A., Cejnarovà, A., Juha, L., Kràsa, J., Phys. Status Solidi, A Appl. Res. 185 (2001) 195.10.1002/1521-396X(200105)185:1<195::AID-PSSA195>3.0.CO;2-B3.0.CO;2-B>Google Scholar
6. Marczewska, B., Olko, P., Nesladek, M., Waligorski, M.P.R., Kerremans, Y., Radiat. Prot. Dosim. 101 (2002) 485.Google Scholar
7. Marczewska, B., Bilski, P., Nesladek, M., Olko, P., Rebisz, M., Waligorski, M.P.R., Phys. Status Solidi, A Appl. Res. 193 (2002) 470.Google Scholar
8. Liu, C.-C., Lin, J.-P., Chu, T.-C., Appl. Radiat. Isotopes 59 (2003) 79.Google Scholar
9. Pospíšil, J., Bulíř, R., Budinskà, Z., Novàk, R., Sopko, B., Spìvàček, V., Čechàk, T., Hlídek, P., Matějka, P., Mackovà, A., Cejnarovà, A., Kràsa, J., Phys. Status Solidi, A Appl. Res. 199 (2003) 131.10.1002/pssa.200303807Google Scholar
10. Rebisz, M., Guerrero, M.J., Tromson, D., Pomorski, M., Marczewska, B., Nesladek, M., Bergonzo, P., Diamond Relat. Mater. 13 (2004) 796.Google Scholar
11. Kràsa, J., Juha, L., Vorlíček, V., Cejnarovà, A., Nucl. Instrum. Methods, A 524 (2004) 332.10.1016/j.nima.2004.01.042Google Scholar
12. Kràsa, J., Marczewska, B., Vorlicek, V., Olko, P., Juha, L., Diamond Relat. Mater. 16 (2007) 1510.10.1016/j.diamond.2006.12.017Google Scholar
13. Preciado, S.-Flores, Schreck, M., Meléndrez, R., Chernov, V., Bernal, R., Vàzquez, C. Cruz, Brown, F., and Barboza-Flores, M., Phys. Stat. Sol. (a), 202 (2005) 2206.Google Scholar
14. Barboza-Flores, M., Schreck, M., Preciado-Flores, S., Meléndrez, R., Pedroza-Montero, M., Chernov, V., phys. stat. sol. (a), 204 (2007) 3047.Google Scholar
15. Benabdesselam, M., Iacconi, P., Butler, J. E. and Nigoul, J.M., Diamond Relat. Mater. 12 (2003) 1750.Google Scholar
16. Wrobel, F., Benabdesselam, M., Iacconi, P. and Mady, F., Radiat. Prot. Dosim. 119 (2006) 115.Google Scholar
17. Gastélum;, S. Cruz-Zaragoza, E.; Meléndrez, R.; Chernov, V.; Barboza-Flores, M., Radiat. Eff. Defects Solids, 162 (2007) 587.10.1080/10420150701470704Google Scholar
18. Descamps, C., Tromson, D., Guerrero, M.J., Mer, C., Rzepka, E., Nesladek, M. and Bergonzo, P., Diamond Relat. Mater. 15 (2006) 833.10.1016/j.diamond.2005.12.042Google Scholar
19. Preciado-Flores, S., Schreck, M., Meléndrez, R., Chernov, V., Bernal, R., Cruz-Vazquez, C., Cruz-Zaragoza, E., Barboza-Flores, M., Radiat. Prot. Dosim. 119 (2006) 226.Google Scholar
20. Barboza-Flores, M., Meléndrez, R., Goncalves, J. A. N., Sandonato, G. M., Chernov, V., Cruz-Zaragoza, E., Ochoa-Nuño, J. D., Bernal, R., Cruz-Vazquez, C., Brown, F., Physica Status Solidi (a), 201 (2004) 2548.Google Scholar
21. Benabdesselam, M., Iacconi, P., Trinkler, L., Berzina, B., Butler, J.E., Radiat. Prot. Dosim. 119 (2006) 390.Google Scholar
22. Benabdesselam, M., Iacconi, P., Trinkler, L., Berzina, B., phys. stat. Sol. (c) 2 (2005) 539.Google Scholar