Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-19T05:43:19.986Z Has data issue: false hasContentIssue false

Damage Evolution and Annealing of Au-Irradiated Samarium Titanate Pyrochlore

Published online by Cambridge University Press:  01 February 2011

Y. Zhang
Affiliation:
Pacific Northwest National Laboratory, Richland, WA, USA
V. Shutthanandan
Affiliation:
Pacific Northwest National Laboratory, Richland, WA, USA
S. Thevuthasan
Affiliation:
Pacific Northwest National Laboratory, Richland, WA, USA
D. E. McCready
Affiliation:
Pacific Northwest National Laboratory, Richland, WA, USA
J. Young
Affiliation:
Pacific Northwest National Laboratory, Richland, WA, USA
R. Devanathan
Affiliation:
Pacific Northwest National Laboratory, Richland, WA, USA
J. Andreasen
Affiliation:
Physics Department, Northwestern University, Evanston, IL, USA
G. Balakrishnan
Affiliation:
Department of Physics, University of Warwick, Coventry, UK
D. M. Paul
Affiliation:
Department of Physics, University of Warwick, Coventry, UK
W. J. Weber
Affiliation:
Pacific Northwest National Laboratory, Richland, WA, USA
Get access

Abstract

Damage evolution and thermal recovery of 1 MeV Au2+ irradiated samarium titanate pyrochlore (Sm2Ti2O7) single crystals were studied by Rutherford backscattering spectroscopy and nuclear reaction analysis. The damage accumulation follows a nonlinear dependence on dose that is well described by a disorder accumulation model, which indicates a predominant role of defect-stimulated amorphization processes. The critical dose for amorphization at 170 and 300 K is ∼0.14 dpa, and a higher dose of ∼ 0.22 dpa is observed for irradiation at 700 K, which agrees with previous in-situ transmission electron microscopy (TEM) data for polycrystalline Sm2Ti2O7. Annealing in an 18O environment reveals a damage recovery stage at ∼ 850 K that coincides with a significant increase in 18O exchange due to oxygen vacancy mobility. This thermal recovery stage is also consistent with the critical temperature for amorphization measured by in-situ TEM in polycrystalline samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tuller, H. L., J. Phys. CHem. Solids 55, 1393 (1994).Google Scholar
2. Wuensch, B. J., Eberman, K. W., Heremans, C., Ku, E. M., Onnerud, P., Yeo, E. M. E., Haile, S. M., Stalick, J. K., and Jorgensen, J. D., Solid State Ionics 129, 111 (2000).Google Scholar
3. Goodenough, J. B. and Castellano, R. N., Solid state Chem. 44, 109 (1982).Google Scholar
4. Korf, S. J., Koopmans, H. J. A., Lippens, B. C., Burggraaf, A. J., and Gellings, P. J., J. Chem. Soc. Faraday Trans. 83, 1485 (1987).Google Scholar
5. Sickafus, K. E., Minervini, L., Grimes, R. W., Valdez, J. A., Ishimaru, M., Li, F., McClellan, K. J., Hartmann, T., Science 289, 748 (2000).Google Scholar
6. Wang, S. X., Begg, B. D., Wang, L. M., Ewing, R. C., Weber, W. J., and Godivan Kutty, K. V., J. Mater. Res. 14, 4470 (1990).Google Scholar
7. Ewing, R. C., Weber, W. J. and Lian, J., Journal of Applied Physics, (2003) submitted.Google Scholar
8. Ewing, R. C., Weber, W. J., Lutze, W., in: Merz, E. R., Walter, C. E. (Eds.), Diposal of Weapon Plutonium, edited by Merz, E. R. and Walter, C. E. (Kluwer Academic Publishers, The Netherlands, 1996), P. 65. Google Scholar
9. Begg, B. D., Hess, N. J., Weber, W.J., Devanathan, R., Icenhower, J. P., Thevuthasan, S., and McGrail, B.P., J. Nucl. Mater. 288, 208 (2001).Google Scholar
10. Weber, W. J., Wald, J. W., and Hj, Matzke, Mater. Lett. 3, 173 (1985).Google Scholar
11. Weber, W. J., Wald, J. W., and Hj, Matzke, J. Nucl. Mater. 138, 196 (1986).Google Scholar
12. Begg, B. D., Weber, W.J., Devanathan, R., Icenhower, J.P., Thevuthasan, S., and McGrail, B.P., Ceram. Trans. 107, 553 (2000).Google Scholar
13. Ewing, R. C., Weber, W. J., and Clinard, F. W. Jr, Prog. Nucl. Energy 29, 63 (1995).Google Scholar
14. Weber, W. J., Ewing, R. C., Catlow, C. R. A., Rubia, T. Diaz de la, Hobbs, L. W., Kinoshita, C., Hj, Matzke, Motta, A. T., Nastasi, M., Salje, E. K. H., Vance, E. R., and Zinkle, S. J., J. Mater. Res. 13, 1434 (1998).Google Scholar
15. Clinard, F. W. Jr, Peterson, D. E., Rohr, D. L., and Hobbs, L. W., J. Nucl. Mater. 126, 245 (1984).Google Scholar
16. Lumpkin, G. R., J. Nucl. Mater. 289, 136 (2001).Google Scholar
17. Ewing, R. C. and Wang, L. M., Nucl. Instr. Meth. Phys. Res. B65, 319 (1992).Google Scholar
18. Wang, S. X., Wang, L. M., Ewing, R. C., Was, G. S., and Lumpkin, G. R., Nucl. Instr. Meth. Phys. Res. B148, 704 (1999).Google Scholar
19. Weber, W. J. and Hess, N. J., Nucl. Instrum. Methods Phys. Res. B 80–81, 1245 (1993)Google Scholar
20. Begg, B. D., Hess, N. J., McCready, D.E., Thevuthasan, S., and Weber, W. J., J. Nucl. Mater. 289, 188 (2001).Google Scholar
21. Balakrishnan, G., Petrenko, O. A., Lees, M. R., Paul, D.M., J. Phys. Condensed Matt. 10, (1998) L723–L725.Google Scholar
22. International Centre for Diffraction Data, Newtown Square, PA. Powder Diffraction File (2002), PDF 73–1699.Google Scholar
23. Zhang, Y., Shutthanandan, V., Devanathan, R., Thevuthasan, S., McCready, D. E., Young, J., Balakrishnan, G., Paul, D. M., Weber, W. J., Nucl. Instr. Meth. Phys. Res., in Press (2004).Google Scholar
24. Weber, W. J. and Ewing, R.C., Scientific Basis for Nuclear Waste Management XXV, edited by McGrail, B.P. and Cragnolino, G. A., Mater. Res, Soc. Symp. Proc. 713, Warrendale, PA, (2002) p. 443.Google Scholar