Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-19T18:11:56.588Z Has data issue: false hasContentIssue false

Defect Relaxation in Disordered Materials: Stretched Exponentials, Meyer-Neldel Rule, and Staebler-Wronski Effect

Published online by Cambridge University Press:  25 February 2011

Richard S. Crandall*
Affiliation:
SERI, Golden CO 80401
Get access

Abstract

Using an exponential distribution of activation barriers, annealing data for metastable effects in hydrogenated amorphous silicon, a-Si:H, are quantitatively explained. This includes the stretched exponential time dependence of annealing and a Meyer-Neldel rule for the annealing time constant. An exponential distribution of annealing energies arises because defects are frozen in during growth at high temperature. Mechanisms that lead to an exponential distribution of annealing energies are weak bond-breaking and charge trapping.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292, (1977).Google Scholar
2 Jackson, W. B., Phys. Rev. B38, 3595, (1988).Google Scholar
3 Jang, J. and Lee, C., J. Appl. Phys. 54, 3943 (1983); J. Jang, S. C. Park, S. C. Kim & C. Lee, Appl. Phys. Lett 51, 1804, (1987); J. Jang, T. M. Kim, J. K. Hyun, J. H. Yoon, and C. Lee, J. Non-Cryst Sol 59&60, 429 (1983).Google Scholar
4 Jackson, W.B. & Kakalios, J., Phys. Rev. B37, 1020 (1988).CrossRefGoogle Scholar
5 Hepburn, A. R., Marshall, J. M., Main, C., Powell, M. J., and van Berkel, C., Phys. Rev. Lett. 56, 2215 (1986).Google Scholar
6 Stutzmann, M., Jackson, W.B., and Tsai, C.C., Phys. Rev. B32, 23 (1985).CrossRefGoogle Scholar
7 Crandall, R. S., Phys. Rev. B24, 7457 (1981); Phys. Rev. B36, 2645 (1987).Google Scholar
8 The Meyer-Neldel Rule states that the logarithm of the conductivity prefactor varies as the Fermi energy; Meyer, W. and Neldel, H., Z. Tech. Phys. 12, 588 (1937).Google Scholar
9 Jackson, W. B., Phys. Rev. B38, 3595, (1988).CrossRefGoogle Scholar
10 Branz, H. M., Keyes, B. M., Trefny, J. U., and Crandall, R. S., International Topical Conference on Hydrogenated Amorphous Silicon Devices and Technology. IBM, Yorktown Heights. 1988 (IEEE Transactions on Electron devices, in Press).Google Scholar
11 Fritzche, H., “Optical Effects in Solids (Snowbird Utah), 1984)”, edited by Taylor, P. C. and Bishop, S. G. (AlP, New York, 1984), 478 (AlP Conf. Proc. No. 120).Google Scholar
12 Hydrogen could play a role in that it softens the lattice. In this sense it is not much different from any other alloy constituent.Google Scholar
13 Smith, Z E. and Wagner, S., Phys. Rev. B32, 5510 (1985).Google Scholar
14 Bar-Yam, Y., Adler, D. and Joannopolus, J. D., Phys. Rev. Lett. 57, 467 (1988).Google Scholar
15 Adler, D., Solar Cells. 9, 133 (1983).CrossRefGoogle Scholar
16 Street, R. A., Tsai, C. C., Kakalios, J. and Jackson, W. B., Philos. Mag. B 56, 305 (1987).Google Scholar
17 Tiedje, T. and Rose, A., Solid State Commun. 37, 49 (1981).CrossRefGoogle Scholar
18 Winer, K., Hirabayashi, I., and Ley, L.; Phys. Rev. B38, 7680 (1988).Google Scholar