Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-19T05:52:53.102Z Has data issue: false hasContentIssue false

Degradation of Porous Si Layers Caused by Thermal Treatment

Published online by Cambridge University Press:  28 February 2011

H. Münder
Affiliation:
Institut fur Schicht- und Ionentechnik, Forschungszentrum Jülich, 5170 Jülich, Germany
M. G. Berger
Affiliation:
Institut fur Schicht- und Ionentechnik, Forschungszentrum Jülich, 5170 Jülich, Germany
S. Frohnhoff
Affiliation:
Institut fur Schicht- und Ionentechnik, Forschungszentrum Jülich, 5170 Jülich, Germany
H. Lüth
Affiliation:
Institut fur Schicht- und Ionentechnik, Forschungszentrum Jülich, 5170 Jülich, Germany
U. Rossow
Affiliation:
Institut fiir Festkorperphysik, Tuberlin, 1000 Berlin, Germany
U. Frotscher
Affiliation:
Institut fiir Festkorperphysik, Tuberlin, 1000 Berlin, Germany
W. Richter
Affiliation:
Institut fiir Festkorperphysik, Tuberlin, 1000 Berlin, Germany
Get access

Abstract

Porous Si Alms formed on different p-doped substrates are studied by Raman spectroscopy, photoluminescence, and spectroscopic ellipsometry. Due to a thermal treatment the morphology is changed. A reduction in the number of nanocrystals with diameters below 30Å is found. It is shown that the photoluminescence is caused by the formation of small nanocrystals and that the effect of amorphous Si as a basic mechanism can be ruled out. The strain which must be taken into account for the interpretation of the Raman spectra decreases with increasing heating temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Munder, H., Andrzejak, C., Berger, M.G., Klemradt, U., Lüth, H., Herino, R., and Ligeon, M., Thin Solid Films, in press (1992).Google Scholar
2. Campbell, I. and Fauchet, P., Solid State Commun. 58, 739 (1986).Google Scholar
3. Münder, H., Berger, M.G., Lüth, H., and Rossow, U., to be published.Google Scholar
4. Kim, K.H., Bai, G., and Nicolet, M.A. J. Appl. Phys. 69, 2201 (1991).Google Scholar
5. Gupta, P., Colvin, V.L., and George, S.M. Phys. Rev. B 37, 8234 (1988).Google Scholar
6. Münder, H., Andrzejak, C., Berger, M.G., Ekkhoff, T., Lüth, H., Theiβ, W., Rossow, U., Richter, W., Herino, R., and Ligeon, M., Appl. Surf. Sci. 56–58, 6 (1992).Google Scholar
7. Münder, H., Berger, M.G., Lüth, H., Rossow, U., Frotscher, U., Richter, W., Herino, R., and Ligeon, M., Appl. Surf. Sci., in press (1992).Google Scholar
8. Münder, H., Frohnhoff, S., Lüth, H., Theifβ, W., and Grosse, P., to be published.Google Scholar
9. Read, A.J., Needs, R.J., Nash, K.J., Canham, L.T., Calcott, P.D.J., and Qteish, A., Phys. Rev. Lett. 69, 1232 (1992).Google Scholar
10. Sanders, G.D., and Chang, Yia-Chung, Phys. Rev. B 45, 9202 (1992).Google Scholar
11. Cullis, A.G., Canham, L.T., Nature 353, 335 (1991).Google Scholar