Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-18T07:03:16.514Z Has data issue: false hasContentIssue false

Density of RDX Crystals Grown During High Acceleration in an Ultracentrifuge

Published online by Cambridge University Press:  26 February 2011

Mary Y. D. Lanzerotti
Affiliation:
ylanzero@pica.army.mil, U. S. Army ARDEC, Bldg. 3022, Picatinny Arsenal, New Jersey, 07806-5000, United States
Richard Z. Squillace
Affiliation:
rsquill@pica.army.mil, U. S. Army ARDEC, United States
Alexander Gandzelko
Affiliation:
agandz@pica.army.mil, U. S. Army ARDEC
Jagadish Sharma
Affiliation:
sharmaj@nswccd.navy.mil, Naval Surface Warfare Center, Carderock Division, United States
Get access

Abstract

RDX (cyclotrimethylene-trinitramine) crystals were grown during high acceleration (high g) in an ultracentrifuge. These crystals are found to have a density ∼0.6% greater than 1 g crystals and to have a greatly reduced defect content. The high g crystals should therefore have significantly reduced shock sensitivity as compared to commercial grade RDX. When a RDX saturated acetone solution is accelerated at 200,000 g, the RDX solute molecules move individually through the acetone solvent molecules to form a RDX crystal because the density of the RDX (Theoretical Maximum Density 1.806 g/cc) solute is more dense than the acetone (0.79 g/cc)solvent. Crystal growth is controlled by the g-force. Crystal defects including voids and solution inclusions caused by temperature variation or evaporation at 1 g are minimized and the RDX crystal density increases. A nitrogen pycnometer was used to measure the density of the RDX crystals grown at 1 g and at 200,000 g. The density of the RDX crystals grown at 200,000 g (1.7980±0.0003 g/cc) is found to be greater than the density of RDX crystals grown at 1 g (1.7881±0.0003 g/cc) by 0.0099 g/cc. The density of the high g crystal is 99.6% of the Theoretical Maximum Density of RDX.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Laudise, R. A., The Growth of Single Crystals (Prentice-Hall, Inc., 1970), p. 39.Google Scholar
2. Holden, A. and Singer, P., Crystals and Crystal Growing (Doubleday & Company, Inc, 1960).Google Scholar
3. Chen, P. S., Shlichta, P. J., Wilcox, W. R., Lefever, R. A., J. Crystal Growth 47, 4360 (1979).Google Scholar
4. Rosenberger, F., Fundamentals of Crystal Growth (Springer, 1979).Google Scholar
5. Ward, M. D., Science 308, 15661567 (2005).Google Scholar
6. Shlichta, P. J. and Knox, R. E., J. Crystal Growth 3, 808813 (1968)Google Scholar
7. Shlichta, P. J., J. Crystal Growth 119, 17 (1992)Google Scholar
8. Amato, I., Science 253, 3032 (1992)Google Scholar
9. Lanzerotti, M. Y. D., Autera, J., Pinto, J. and Sharma, J. in High Pressure Science and Technology –1993, edited by Schmidt, S. C., Shaner, J. W., Sammara, G. A., and M, Ross (AIP Conference Proceedings 309, Part 2, New York, NY, 1994), pp. 489491.Google Scholar
10. Lanzerotti, M. Y. D., Autera, J., Borne, L., and Sharma, J. in Decomposition, Combustion, and Detonation Chemistry of Energetic Materials edited by Brill, R. B., Russel, T. P., Tao, W.C., and Wardle, R. B., (Mater. Res. Soc. Proc. 60, Pittsburgh, PA, 1996) pp. 7378.Google Scholar
11. Baillou, F., Dartyge, J. M., Spyckerelle, C., and Mala, J. in Proc. Tenth Symposium (International ) on Detonation816823 (1993)Google Scholar
12. Borne, L. in Proc. Tenth Symposium (International) on Detonation 286293 (1993)Google Scholar
13. Van Der Steen, A., Verbeek, H. J., and Meulenbrugge, J. J. in Proc. Ninth Symposium (International) on Detonation 8388 (1989)Google Scholar
14. Borne, L., Proc. Europyro 95 6eme Cong. Intl. de Pyro, Tours-France 125131 (1995)Google Scholar
15. Mishra, I. B. and Van de Kieft, L. J., Proc. 19th International Annual Conf. of ICT, Karlsruhe, pp. 25–1 to 25-21 (1988).Google Scholar
16. Borne, L., Patedoye, J. and Spyckerelle, C., Propellants, Explosives, Pyrotechnics 24, 255259 (1999).Google Scholar
17. Borne, L. in Proc. Eleventh Symposium (International) on Detonation 657663 (1998).Google Scholar
18. Borne, L. and Beaucamp, A., Proc. Twelfth Symposium (International) on Detonation 3543 (2002)Google Scholar
19. Borne, L., Beaucamp, A., and Fendeleur, D., Proc. 29th International Annual Conference of ICT, Karlsruhe, pp. 16–1 to 16-16 (1998).Google Scholar
20. Whitley, V., Bull. APS, 50, 82 (2005).Google Scholar
21. Scholtes, G. and van der Heijden, A., Insensitive Munitions & Energetic MaterialsSymposium, 14-17 November 2004, San Francisco, CA, pp 110.Google Scholar
22. van der Heijden, A. E. D. M. and Bouma, R. H. B., Crystal Growth & Design 4, 9991007 (2004).Google Scholar
23. Gruzdkov, Y. A., Gupta, Y. M., and Dick, J. J. in Shock Compression of Condensed Matter-1999, edited by Furnish, M. D., Chhabildas, L. C., and Hixon, R. S. (AIP Conference Proceedings 505, Melville, NY, 2000), pp. 929932.Google Scholar
24. Dreger, Z. A., Gruzdkov, Y. A., Gupta, Y. M., and Dick, J. J. in Shock Compression of Condensed Matter –1999, edited by Furnish, M. D., Chhabildas, L. C., and Hixon, R. S. (AIP Conference Proceedings 505, Melville, NY, 2000) pp. 933936.Google Scholar
25. Dick, J. J. and Martinez, A. R. in Shock Compression of Condensed Matter –2001, edited by Furnish, M. D., Thadhani, N. N., and Horie, Y. (AIP Conference Proceedings 620,Melville, NY, 2002) pp. 817820.Google Scholar
26. Hooks, D. E., Dick, J. J., and Martinez, A. R. in Shock Compression of Condensed Matter – 2003, edited by Furnish, M. D., Gupta, Y. M., and Forbes, J. W. (AIP Conference Proceedings 706, Melville, NY, 2004) pp. 985–988.Google Scholar
27. Dick, J. J., J. Energetic Materials 1, 275286 (1983).Google Scholar
28. Halfpenny, P.J., Roberts, K. J. and Sherwood, J. N., J. Crystal Growth 69, 7381 (1984).Google Scholar
29. Halfpenny, P. J., Roberts, K. J. and Sherwood, J. N., J. Materials Science 19, 16291637 (1984).Google Scholar
30. Halfpenny, P. J., Roberts, K.J. and Sherwood, J. N., J. Crystal Growth 65, 524529 (1983).Google Scholar
31. Halfpenny, P. J., Roberts, K. J. and Sherwood, J. N., Phil. Mag. A53, 531542 (1986).Google Scholar
32. Beckman Centrifuge Product Selection Guide SB-788, p. 142.Google Scholar
33. Micromeritics AccuPyc 1330 Pycnometer for 1-cm3 Samples, Operators Manual, Equipment Description, p. 13, September 1996.Google Scholar
34. Horst, J. H. ter, Geertman, R. M., van der Heijden, A. E., van Rosmalen, G. M., Proc. 30th International Conference of ICT, Karlsruhe, pp. 42–1 –42-15 (1999)Google Scholar
35. Horst, J. H. ter, Geertman, R. M., van der Heijden, A. E., van Rosmalen, G. M., J. Crystal Growth, 198/199, 773779 (1999).Google Scholar
36. Iqbal, Z., Suryanarayanan, K., Bulusu, S., and Autera, J. R., Infrared and Raman Spectra of 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), Picatinny Arsenal Technical Report 4401, October 1972, p.5.Google Scholar
37. Morrow, S., U.S. Army ARDEC, Picatinny Arsenal, NJ, 1989.Google Scholar
38. Dobratz, B. M. and Crawford, P. C., Properties of Chemical Explosives and Explosive Simulants, UCRL-52997, Lawrence Livermore National Laboratory, University ofCalifornia, Livermore, CA, 1985.Google Scholar
39. Weast, R. C., Handbook of Chemistry and Physics, CRC Press, Cleveland, OH, 1975- 1976.Google Scholar
40. van der Heijden, A. E. D. M. and Bouma, R. H. B., Proc. 29th International Annual Conference of ICT, Karlsruhe, pp. 65–1 to 65-11 (1998).Google Scholar
41. Hoffman, D. Mark, Density Distributions of Cyclotrimethylenetrinitramines (RDX), Lawrence Livermore Laboratory, Livermore, DA, 2002.Google Scholar
42. Decker, R., U. S. Army ARDEC, Picatinny Arsenal, NJ, 2002.Google Scholar
43. RDX Detail Specification, MIL-DTL-398D, 12 December 1996, Table I, page 4.Google Scholar
44. Spyckerelle, C., Freche, A., and Eck, G., Insensitive Munitions & Energetic Materials Symposium, 14-17 November 2004, San Francisco, CA, pp. 115.Google Scholar
45. Sharma, J., Coffey, C. S., Armstrong, R. W., Elban, W. L., and Lanzerotti, M. Y. D., Shock Compression of Condensed Matter –1999, edited by Furnish, M. D., Chhabildas, L. C., and Hixon, R. S. (AIP Conference Proceedings 505, New York, NY, 2000), pp. 719722.Google Scholar
46. Sharma, J., Coffey, C. S., Armstrong, R. W., Elban, W. L., and Lanzerotti, M. Y. D., Chemical Physics (Russian) 20, 5054 (2001).Google Scholar