Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-16T19:42:03.127Z Has data issue: false hasContentIssue false

Detailed study on the characterization of silver nanocluster in poly(methyl methacrylate)

Published online by Cambridge University Press:  10 February 2011

Naohisa Yanagihara
Affiliation:
Department of Engineering and Materials Science, Teikyo University, 1-1 Toyosatodai Utsunomiya 320, Japan
Kazutaka Uchida
Affiliation:
Department of Engineering and Materials Science, Teikyo University, 1-1 Toyosatodai Utsunomiya 320, Japan
Muyuki Wakabayashi
Affiliation:
Department of Engineering and Materials Science, Teikyo University, 1-1 Toyosatodai Utsunomiya 320, Japan
Toru Hara
Affiliation:
Department of Engineering and Materials Science, Teikyo University, 1-1 Toyosatodai Utsunomiya 320, Japan
Get access

Abstract

Solid sol of silver in poly(methyl methacrylate), Ag/PMMA, was prepared by bulk polymerization of methyl methacrylate solution of silver (I) triflluoroacetate (AgTfa) and followed by postheating. The formation of the metallic Ag nanocluster was characterized by visible spectroscopy, and effects of the concentrations of AIBN and AgTfa and the heat-treatment duration on the formation of Ag cluster were investigated. Furthermore, based on the kinetic study of MMA in the presence of AgTfa, possible mechanism for the reduction and agglomeration of silver is proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Duncan, M.A. and Rouvray, D. H., Scientific American 1989, 110.Google Scholar
2. Henglein, A., Chem. Rev., 89, 1861 (1989)Google Scholar
3. Henglein, A., Weller, H., J. Am. Chem. Soc., 112, 4657 (1990).Google Scholar
4. Mostafavi, M., Keghouche, N., Delcourt, M-O., and Belloni, J., Chem. Phys. Lett., 187, 193 (1990).Google Scholar
5. Platzer, O., Amblard, J., Marignier, I.L., and Belloni, J., J. Phys. Chem., 96, 2334 (1992).Google Scholar
6. Creighton, J.A., Blatchford, C.G., and Albrecht, M.G., Trans. Faraday Soc., 75, 790 (1979).Google Scholar
7. Fabrikanos, V.A., Athanassiou, S., and Lieser, K.H., Naturforsch, Z., B18, 612 (1969).Google Scholar
8. Frens, G., Nature, 241, 20 (1973).Google Scholar
9. Heard, S.M., Grieser, F., Barraclough, C.G., and Sanders, J.V., J. Colloid Interface Sci. 93, 545 (1983).Google Scholar
10. Toshima, N., Yonezawa, T., and Kushihashi, K., J. Chem. Soc. Faraday Trans., 89, 2537 (1993).Google Scholar
11. Nakao, Y., J. Chem. Soc., Chem. Commun. 1993 826.Google Scholar
12. Nakao, Y., J. Colloid Interface Sci. 171, 386 (1995).Google Scholar
13. Soto, A.N., Yanagihara, N., and Ogura, T., J. Coord. Chem. 38, 65 (1996).Google Scholar
14. Linnert, T., Mulvaney, P., Henglein, A., and Weller, H., J. Am. Chem. Soc. 112, 4657 (1990).Google Scholar
15. Kreibig, U. and Genzel, L., Surface Science 156, 678 (1985).Google Scholar
16. Fornasiero, D. and Grieser, F., J. Colloid Interface Sci. 141, 168 (1991).Google Scholar
17. Heard, S.M., Grieser, F., and Barraclough, C.G., J. Colloid Interface Sci. 93, 545 (1983).Google Scholar
18. Yanagihara, N., Ishii, Y., Kawase, T., Kaneko, T., Horie, H., and Hara, T., Mat. Res. Soc. Symp. Proc., 457, 469 (1997).Google Scholar
19. Liu, L.C. and Risbud, S.H., J. Appl. Phys. 68, 28 (1990).Google Scholar
20. Ekimov, A.I., Efros, A. L., and Onushchenko, A.A., Solid State Commun. 56, 921 (1985).Google Scholar
21. Fu, J., Osaka, A., Nanba, T., and Miura, Y., J. Mater. Res. 9, 493 (1994).Google Scholar
22. Nasu, H., Kaneko, S., Tsunetomo, K., and Kamiya, K., J. Ceram. Soc. Jpn. 99, 266 (1991).Google Scholar