Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-18T20:24:14.217Z Has data issue: false hasContentIssue false

Detection of Misfit Strain Relaxation in MBE Grown Si1-xGex Films by Dynamic Monitoring of Rheed Diffraction Features

Published online by Cambridge University Press:  25 February 2011

J.W. Maes
Affiliation:
Delft Institute of Microelectronics and Submicron Technology (DIMES)Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
O.F.Z. Schannen
Affiliation:
Delft Institute of Microelectronics and Submicron Technology (DIMES)Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
J. Trommel
Affiliation:
Delft Institute of Microelectronics and Submicron Technology (DIMES)Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
K. Werner
Affiliation:
Delft Institute of Microelectronics and Submicron Technology (DIMES)Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
S. Radelaar
Affiliation:
Delft Institute of Microelectronics and Submicron Technology (DIMES)Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
P. Balk
Affiliation:
Delft Institute of Microelectronics and Submicron Technology (DIMES)Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
Get access

Abstract

Reflection high energy electron diffraction (RHEED) has been used to detect strain relaxation in SiGe during growth on <001>- oriented Si for various layer compositions and substrate temperatures. The RHEED-technique permits the dynamic monitoring of the in-plane lattice constant of the growing layer by measuring the distance between diffraction features. The actual RHEED pattern is recorded by a CCD camera and subsequently processed in real time by a computer. This way, the layer relaxation can be followed conveniently; a detection limit for a variation in the lattice constant of Δa/a=5.10−4 has been obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Merwe, Jan H. van der, Crit. Rev. in Sol. St. and Mat. Sc. 17, 187 (1991).Google Scholar
2 Munekata, H., Chang, L. L., Woronick, S. C., Kao, Y. H., J. Crystal Growth 81, 237 (1987).Google Scholar
3 Miki, K., Sakamoto, K., Sakamoto, T., Mat. Res. Soc. Symp. Proc Vol. 148, 323 (1989).Google Scholar
4 Whaley, G. J., P. Cohen, I., Appl. Phys. Lett. 57, 144 (1990).Google Scholar
5 Bean, J. C., Feldman, L. C., Fiory, A. T., Nakahara, S., Robinson, I. K., J. Vac. Sci. Technol. A 2, 436 (1984).Google Scholar
6 Baribeau, J. M., Kechang, Song, Munro, K., Appl. Phys. Lett. 54 323 (1989).Google Scholar
7 Denhoff, M. W., Baribeau, J. M., Houghton, D. C., Rajan, K., J. Cryst. Growth 81, 445 (1987).Google Scholar
8 Houghton, D. C., J. Appl. Phys. 70, 2136 (1991).Google Scholar
9 Matthews, J. W., Mader, S., Light, T. B., J. Appl. Phys. 41, 3800 (1970); J. W. Matthews, A. E. Blakeslee, J. Cryst. Growth 27, 118 (1974).Google Scholar
10 Houghton, D. C., Perovic, D. D., Baribeau, J. M., Weatherly, G. C., J. Appl. Phys. 67, 1850 (1990).Google Scholar
11 Fritz, I. J., Appl. Phys. Lett. 5, 1080 (1987).Google Scholar