Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T09:24:29.506Z Has data issue: false hasContentIssue false

Determination of AlGaN/GaN HFET Electric Fields using Electroreflectance

Published online by Cambridge University Press:  11 February 2011

S. R. Kurtz
Affiliation:
Sandia National Laboratories Albuquerque, NM 87185–0601, U.S.A.
A. A. Allerman
Affiliation:
Sandia National Laboratories Albuquerque, NM 87185–0601, U.S.A.
D. D. Koleske
Affiliation:
Sandia National Laboratories Albuquerque, NM 87185–0601, U.S.A.
A. G. Baca
Affiliation:
Sandia National Laboratories Albuquerque, NM 87185–0601, U.S.A.
R. D. Briggs
Affiliation:
Sandia National Laboratories Albuquerque, NM 87185–0601, U.S.A.
Get access

Abstract

A contacted electroreflectance technique was used to characterize the electronic properties of AlGaN/GaN heterostructure field-effect transistors (HFETs). By studying variations in the electroreflectance with applied electric field, spectral features associated with the AlGaN barrier, the 2-dimensional electron gas at the interface, and bulk GaN were observed. Barrier-layer composition and electric field were determined from the AlGaN Franz-Keldysh oscillations. Comparing HFETs grown on SiC and sapphire substrates, the measured AlGaN polarization electric field (0.25±0.05 MV/cm) approached that predicted by a standard model (0.33 MV/cm) for the higher mobility HFET grown on SiC.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Khan, M. A., Kuznia, J. N., Van Hove, J. M., Pan, N., and Carter, J., Appl. Phys. Lett. 60, 3027 (1992).Google Scholar
[2] Khan, M. A., Kuznia, J. N., Olsen, D. T., Schaff, W. J., Burm, J. W., and Shur, M. S., Appl. Phys. Lett. 65, 1121 (1994).Google Scholar
[3] Mohammad, S. N., Salvador, A. A., and Morkoc, H., Proc. IEEE 83, 1306 (1995).Google Scholar
[4] Redwing, J. M., Tischler, M. A., Flynn, J. S., Elhamri, S., Ahoujja, M., Newrock, R. S., and Mitchel, W.C., Appl. Phys. Lett. 69, 963 (1996).Google Scholar
[5] Ambacher, O., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., Murphy, M., Schaff, W. J., Eastman, L.F., Dimitrov, R., Wittmer, L., Stutzmann, M., Rieger, W., and Hilsenbeck, J., J. Appl. Phys. 85, 3222 (1999), and references therein.Google Scholar
[6] Wetzel, C., Takeuchi, T., Amano, H, and Akasaki, I., J. Appl. Phys. 85, 3786 (1999).Google Scholar
[7] Hou, Y.T., Teo, K. L., Li, M. F., Uchida, K., Tokunaga, H.. Akutsu, N., and Matsumoto, K., Appl. Phys. Lett. 76, 1033 (2000).Google Scholar
[8] Kurtz, S. R., Allerman, A. A., Koleske, D. D., and Peake, G. M., Appl. Phys. Lett. 80, 4549 (2002).Google Scholar
[9] Lin, D. Y., Huang, Y. S., Chen, Y.F., and Tiong, K. K., Solid State Comm. 107, 533 (1999).Google Scholar
[10] Snow, E. S., Glembocki, O. J., and Shanabrook, B. V., Phys. Rev. B 38, 12483 (1988).Google Scholar
[11] Hall, D. J., Hosea, T. J. C., and Lancefield, D., J. Appl. Phys. 82, 3092 (1997).Google Scholar
[12] Kurtz, S. R., to be published.Google Scholar
[13] Dang, X. Z., Ashbeck, P. M., Yu, E. T., Sullivan, G. J., Chen, M. Y., McDermott, B. T., Boutros, K. S., and Redwing, J. M., Appl. Phys. Lett. 743, 3890 (1999).Google Scholar
[14] Debdeep Jena, Gossard, Arthur C., and Mishra, Umesh K., Appl. Phys. Lett. 76, 1707 (2000).Google Scholar
[15] Ochalski, T. J., Gil, B., Lefebvre, P., Grandjean, N., Leroux, M., Massies, J., Nakamura, S., and Morkoc, H., Appl. Phys. Lett. 743, 3353 (1999).Google Scholar
[16] Jiang, H., Zhao, G. Y., Isikawa, H., Egawa, T., Jimbo, T., and Umeno, M, J. Appl. Phys. 89, 1046 (2001).Google Scholar