Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-13T19:09:54.868Z Has data issue: false hasContentIssue false

Determination of Optical Properties of the Micro-Facetted InGaAs Quantum Wells and Quantum Wires Using Magnetophotoluminescence

Published online by Cambridge University Press:  15 February 2011

Sung-Bock Kim
Affiliation:
Research Department, Electronics and Telecommunications Research Institute, Yusong P.O. Box 106, Taejon, 305–600, Korea
Jeong-Rae Ro
Affiliation:
Research Department, Electronics and Telecommunications Research Institute, Yusong P.O. Box 106, Taejon, 305–600, Korea
El-Hang Lee
Affiliation:
Research Department, Electronics and Telecommunications Research Institute, Yusong P.O. Box 106, Taejon, 305–600, Korea
Get access

Abstract

We report optical properties of the micro-facetted InGaAs quantum wells and quantum wires on non-planar substrates employing magnetophotoluminescence (MPL). The InGaAs/GaAs structures were grown by chemical beam epitaxy on V-groove patterned GaAs substrates. In the presence of a magnetic field of 18 T, the diamagnetic shifts of exciton ground states of the (001)-and side-QWLs are ΔE=15.6 and 10.3 meV, respectively. In MPL of the facetted microstructure, we found that the different diamagnetic shifts strongly depend on the magnitude of the effective magnetic field as well as the quantum confinement. From comparing the intensities and full widths at half maximum, we easily found that side-QWLs are of higher quality than (OOl)-QWLs. We also fabricated InGaAs/GaAs quantum wires with a size of about 200 Å × (500–600) Å. By fitting the diamagnetic shifts (ΔΕ = 9.5 meV) of the exciton ground state with the calculated results of a variational method, we estimated that the reduced mass of the exciton is approximately 0.052 me.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shimomura, S., Wakejima, A., Adachi, A., Okamoto, Y., Sano, N., Murase, K., and Hiyamizu, S., Jpn. J. Appl. Phys. 32, L1728 (1993).Google Scholar
2.Hayakawa, T., Takahashi, K., Kondo, M., Suyama, T., Yamamoto, S., and Hijikata, T., Phys. Rev. Lett. 25, 349 (1988).Google Scholar
3.Imamura, K., Yokoyama, N., Ohnishi, T., Suzuki, S., Nakai, K., Nishi, H., and Shibatomi, A., Jpn. J. Appl. Phys. 23, L342 (1984).Google Scholar
4.Rose, B., Remienes, D., Hornung, V., and Robein, D., J. Cryst. Growth, 107, 850 (1991).Google Scholar
5.Soole, J.B.D., Schumacher, H., LeBlanc, H.P., Bhat, R., and Koza, M.A., Appl. Phys. Lett. 56, 1518 (1990).Google Scholar
6.Sugawara, H., Itaya, K., Nozaki, H., and Hatakoshi, G., Appl. Phys. Lett. 61, 1775 (1991).Google Scholar
7.Olsen, G.H., Zamerowski, T.J., and Hawrylo, F.Z., J. Cryst. Growth, 59, 654 (1982).Google Scholar
8.Bose, S.S., Lee, B., Kim, M.H., Stillman, G.E., and Wang, W.J., J. Appl. Phys. 63, 743 (1988).Google Scholar
9.Luo, L.F., Beresford, R., Wang, W.I., and Mendez, E.E., Appl. Phys. Lett. 54, 213 (1989).Google Scholar
10.Hayakawa, T., Kondo, M., Suyama, T., Takahashi, K., Yamamoto, S., and Hijikata, T., Jpn. J. Appl. Phys. 26, L302 (1987).Google Scholar
11.Chadi, D.J., Phys. Rev. B29, 786 (1984).Google Scholar
12.Park, S.J., Ro, J.R., Sim, J.K., and Lee, E.H., ETRI J. 16, 1 (1994).Google Scholar
13.Kim, S.B., Park, S.J., Ro, J.R., and Lee, E.H., J. Cryst. Growth, 164, 356 (1996).Google Scholar
14.Lee, K.S., Aoyagi, Y., and Sugano, T., Phys. Rev. B46, 10267 (1992).Google Scholar
15.Lee, K.S. and Lee, E.H., ETRI J. 17, 13 (1996).Google Scholar