Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-11T18:20:00.099Z Has data issue: false hasContentIssue false

Determination of Organic Contamination From Polymeric Construction Materials for Semiconductor Technology

Published online by Cambridge University Press:  15 February 2011

Klaus J. Budde*
Affiliation:
SIEMENS AG, Research Laboratories, ZFE T MR 3 Otto Hahn Ring 6, D 81730 Munich, Germany
Get access

Abstract

Volatile organic surface contaminants on silicon wafers lead to strong detrimental impact on semiconductor production yield and product reliability. Our model for the mechanism of impact is introduced and discussed.

Only a few metrology methods are suited for the ultratrace detection of volatiles on surfaces and their identification. The data presented in this paper were achieved by ion mobility spectrometry followed by mass spectrometry (IMS/MS).

Eleven commercial wafer storage and transport boxes were screened by sampling the contaminants onto silicon wafers at room temperature. In a second set of experiments, enhanced stress testing was performed at elevated temperatures for polypropylene, polycarbonate, polytetrafluoro ethylene, perfluoro alkoxy polymer, polyvinylidene fluoride and acrylonitrile-butadiene-styrene copolymer. From the outgassing behaviour of single contaminants, valuable information can be achieved.

Test method E 46 (SEMI) samples the contaminants onto the wafer under the real conditions of use. The data for six virgin minienvironments are shown.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

/1/ Ohmi, T., Microcontamination 6(1988),16 Google Scholar
/2/ Licciardello, A., Puglisi, O., Pignataro, S., Appl. Phys. Lett. 48(1986),41 Google Scholar
/3/ Parimi, P., Sundarsingh, V., J. Electrochem. Soc. PV 90–9(1990),260 Google Scholar
/4/ Grudner, M., Jacob, H., Appl. Phys. A 39(1986),73 Google Scholar
/5/ Zarrera, L. A., Moulder, J.F., J. Electrochem. Soc. 136(2)(1989),484 Google Scholar
/6/ Yang, M.G., Koliwad, K.M., McGuire, G.E., J. Electrochem. Soc. 122(5)(1975),675 Google Scholar
/7/ Beyer, M., Budde, K., Holzapfel, W., Appl. Surf. Sci. 63(1993),88 Google Scholar
/8/ Henderson, R.C., J. Electrochem. Soc. 119(1972),772 Google Scholar
/9/ Deal, B., McNeilly, M., Kao, D.. Extended abstracts of the 1991 Intern. Conf. on Solid State Devices and Materials, Yokohama, 27.-29.8. 1991,496Google Scholar
/10/ Burkman, D., Semiconductor International, July 1981,103Google Scholar
/11/ Ohmi, T., Isagawa, T., Kogure, M., Imaoka, T., J. Electrochem. Soc. 140(1993),804 Google Scholar
/12/ Goodman, J., Andrews, S., Solid State Technology, July 1990,65Google Scholar
/13/ Kim, K.B., Maillot, Ph., Morgan, A.E., J. Appl. Phys. 67(1990),2176 Google Scholar
/14/ Aizenberg, I. A., Kopetskii, C. V., Nosenko, S. V., Doklady Akademii Nauk SSSR, December 1988, 303(5)(1988),1147 Google Scholar
/15/ Hossain, S., Panatano, C., Ruzyllo, J., J. Electrochem. Soc. 137(1990),3287 Google Scholar
/16/ Kawanabe, I., Kern, F. W., Itano, M., Miyashita, M., Ohmi, T., MRS Spring Meeting 1991, Anaheim, CAGoogle Scholar
/17/ Kasi, S.R., Liehr, M., J. Vac. Sci. Technol. A 10(4)(1992),795 Google Scholar
/18/ Verhaverbeke, S., doctoral thesis, Leuven, June 1993 Google Scholar
/19/ Sofield, C. J. et al., Proc. Materials Research Society, Symposium B, Spring Meeting 1992, San Francisco, CA Google Scholar
/20/ Lehmann, V., private communication, 1989 Google Scholar
/21/ Stengl, R., private communication, 1988 Google Scholar
/22/ Budde, K.J., Holzapfel, W.J., Beyer, M.M., J. Electrochem. Soc. 142, (1995) 888 Google Scholar
/23/ Budde, K.J., Holzapfel, W.J., Proc. of the 38th Annual Technical Meeting of the IES, Nashville, TN, 3.-8.5 1992, pp.483–488Google Scholar
/24/ Budde, K.J. in “Analytical Techniques for Semiconductor Materials and Process Characterization”, eds. Kolbesen, B.O., McCaughan, D.V., Vandervorst, W. (the Electrochemical Society, Pennington, 1990) PV 90–11, 215 Google Scholar
/25/ McDaniel, E.W., Mason, E.A., “The Mobility and Diffusion of Ions in Gases”,John Wiley and sons, New York, 1975 Google Scholar
/26/Ion Molecule Reactions”, Vol. I: Eds. McDaniel, E.W. et al., John Wiley and sons, New York, 1970; Vol. II: Ed.: J. Franklin, Butterworths, London, 1972Google Scholar
/27/Techniques for the study of ion-molecule-reactions”, Eds.: Farrar, J.M. and Saunders, W.J. Jr., Wiley Interscience, New York, 1988 Google Scholar
/28/Instrumentation for Trace Organic Monitoring”, Eds.: Clement, R.E., Siu, K.W.M. and Hill, H.H. Jr., Lewin Publishers, Boca Raton 1992 Google Scholar
/29/ Hill, H.H. , Jr. et al., Anal. Chem. 62 (1990) 1201 AGoogle Scholar
/30/ Carr, T.W., Ed., “Plasmachromatography”, Plenum Press, New York, London, 1984 Google Scholar
/31/ SEMI E 46 “standard test method for the determination of organic contamination from minienvironments”, yellow ballot 2′94, BOSS volumes 1995 Google Scholar
/32/ SEMI E 45 “standard test method for the determination of inorganic contamination from minienvironments”, yellow ballot 2′94, line ballot #2389 in 8′94, BOSS volumes 1995 Google Scholar
/33/ Streckfuss, N. et al., Proc 41st Annual Technical Meeting of the Institute of Environmental Sciences, Anaheim, CA, 30.4.-5.5.1995, p 147Google Scholar