Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-09T22:24:52.605Z Has data issue: false hasContentIssue false

Development of Thermally Stable Indium-Based Ohmic Contacts to N-Type GaAs

Published online by Cambridge University Press:  25 February 2011

Masanori Murakami
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
H. J. Kim
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
W. H. Price
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
M. Norcott
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
Y. C. Shih
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
Get access

Abstract

Development of low resistance ohmic contacts to n-type GaAs which withstand high temperature cycles without degrading their electrical properties is crucial for fabrication of high performance GaAs integrated circuits. Prior to our work, indium-based ohmic contact materials were not attractive for actual devices, because the contacts provided resistances higher than those of the widely used AuNiGe contacts, were thermally unstable after contact formation, and had rough surface morphology. Recently, based on analysis of the interfacial microstructure of these contacts, several thermally stable, low resistance In-based ohmic contacts to n-type GaAs have been developed in our laboratories using a standard evaporation and lift-off technique and annealing by a rapid thermal annealing method. The present paper points out the reasons for the poor electrical properties and thermal stability of the “traditional” In-based ohmic contacts, and reviews the recent progress.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kwok, S. P., J. Vac. Sci. Technol. B4, 1383 (1986)CrossRefGoogle Scholar
2. Yokoyama, N., Mimura, T., Fukuta, M., and Ishikawa, H., ISSCC Tech. p.218 (1981).Google Scholar
3. Uchitomi, N., Nagaoka, M., Shimada, K., Mizoguchi, T., and Toyoda, N., J. Vac. Sci. Technol. B4, 1392 (1986).Google Scholar
4. Sze, S. M., “Physics of Semiconductor Devices”, John Wiley and Sons, Inc. (1981).Google Scholar
5. Braslau, N., Gunn, J. B., and Staples, J. L., Solid-State Electron. 10, 179 (1983).Google Scholar
6. Magerlein, J. H., Webb, D. J., Callegari, A., Feder, J. D., Fryxell, T., Guthrie, H. C., Hoh, P. D., Mitchell, J. W., Pomerene, A. T. S., Scontras, S., Spiers, G. D., and Greiner, J. H., J. Appl. Phys. 61, 3080 (1987).CrossRefGoogle Scholar
7. Murakami, M., Childs, K. D., Baker, J. M., and Callegari, A., J. Vac. Sci. Technol. B4, 903 (1986).CrossRefGoogle Scholar
8. Shih, Y. C., Murakami, M., Wilkie, E. L., and Callegari, A., J. Appl. Phys. 62, 582 (1987).Google Scholar
9. Hakki, B.W. and Knight, S., IEEE Trans. on Elect. Dev. ED–13, 94 (1966).CrossRefGoogle Scholar
10. Knight, S. and Paola, C. R., “Ohmic Contacts to Semiconductors”, ed. Schwartz, B., Princeton, NJ, Electrochem. Soc. p. 102 (1969).Google Scholar
11. Klohn, K. L. and Wandinger, L., J. Electrochem. Soc. 116, 507 (1969).Google Scholar
12. Wronski, C. R., RCA Review 30, 314 (1969).Google Scholar
13. Basterfield, J., Josh, M. J., and Burgess, M. R., Acta Electronica 15, 83 (1972).Google Scholar
14. Harrison, H. B. and Williams, J. S., “Laser and Electron Processing of Materials”, Eds. White, C. W. and Peercy, P. S., Academic Press, New York, p.481 (1980).Google Scholar
15. Lakhani, A. A., J. Appl. Phys. 56, 1888 (1984).CrossRefGoogle Scholar
16. Otsuki, T., Aoki, H., Takagi, H., and Kano, G., J. Appl. Phys. 63, 2011 (1988).Google Scholar
17. Matino, H. and Tokunaga, M., J. of Electrochem. Soc. 116, 709 (1969).Google Scholar
18. Jung, G., Electron Technol. (Poland) 8, 63 (1975).Google Scholar
19. Cox, H. and Strack, H., Solid-state Elect. 10, 1213 (1967).CrossRefGoogle Scholar
20. Hasty, T. E., Stratton, R., and Jones, E. L., J. Appl. Phys. 39, 4623 (1968).CrossRefGoogle Scholar
21. Cox, R. H. and Hasty, T. E., “Ohmic Contacts to Semiconductors”, ed. Schwartz, B., Princeton, NJ, Electrochem. Soc. p. 88 (1969).Google Scholar
22. Drobny, V., Elektrotech. Cas. (Czechoslovakia) 25, 399 (1974).Google Scholar
23. Sebestyen, T., Hartnagel, H. L., and Herron, L. H., Electron Lett. 10, 372 (1974).Google Scholar
24. Sebestyen, T., Hartnagel, H. L., and Herron, L. H., IEEE Tran. on Elect. Dev., ED–22, 1073 (1975).Google Scholar
25. Weiss, B. L. and Hartnagel, H. L., Electron. Lett. 11, 263 (1975).CrossRefGoogle Scholar
26. Hartnagel, H., Tomizawa, K., Herron, L. H., and Weiss, B. L., Thin Solid Films 36, 393 (1976).Google Scholar
27. McGuire, G. E., Wisseman, W. R., Ragle, R. D., and Tregilgas, J. H., J. Vac. Sci. Technol. 16, 141 (1979).Google Scholar
28. Christou, A., Solid-state Electronics 22, 141 (1979).Google Scholar
29. Mojzes, I., Sebestyen, T., Barna, P. B., Gergely, G., and Szigcthy, D., Thin Solid Films 61, 27 (1979).Google Scholar
30. Sebestyen, T., Mojzes, I., and Szigethy, D., Electron. Lett. 16, 504 (1980).Google Scholar
31. Paola, C. R., Solid-state Electronics 8, 1189 (1970).CrossRefGoogle Scholar
32. Handu, V. K. and Tyagi, M. S., J. Inst. Telecom. Eng. New Delhi 18, 527 (1972).Google Scholar
33. Rideout, V. L., Solid-State Electronics 18, 541 (1975).Google Scholar
34. Kulkarni, A. K. and Blankinship, T. J., Thin Solid Films 96, 285 (1982).Google Scholar
35. Yee, W. and Naseem, H. A., Proc. of 38th Electronics Components Conf. p.614(1988).Google Scholar
36. Chino, K. and Wada, Y., Japan J. Appl. Phys. 16, 1823 (1977).CrossRefGoogle Scholar
37. Loveluck, J. E., Rackham, G. M., and Steeds, J. W., Inst. Phys. Conf. Ser. 36, 297 (1977).Google Scholar
38. Eckhardt, G., “Laser and Electron Processing of Materials”, Eds. White, C. W. and Peercy, P. S., Academic Press, New York, p.466 (1980).Google Scholar
39. Steeds, J. W., Rackham, G. M., and Merton-Lyn, D., Inst. Phys. Conf. Ser. 60, 387 (1981).Google Scholar
40. Rackham, G. M. and Steeds, J. W., Inst. Phys. Conf. Ser. 60, 397 (1981).Google Scholar
41. Grovenor, C. R. M., Thin Solid Films 104, 409 (1983).CrossRefGoogle Scholar
42. Healy, M. F. and Mattauch, R. J., IEEE Trans. Electron. Devices ED–23, 68 (1976).Google Scholar
43. Gol'dberg, Yu. A. and Tsarenkov, B.V., Soviet Physics-Semicon. 3, 1447 (1970).Google Scholar
44. Marvin, D. C., Ives, N. A., and Leung, M. S., J. Appl. Phys. 58, 2659 (1985).Google Scholar
45. Allen, L., Hung, L. S., Kavanagh, K. L., Phillips, J. R., Yu, A. J., and Mayer, J. W., Appl. Phys. Lett. 51, 326 (1987).Google Scholar
46. Murakami, M., Price, W. H., Shih, Y. C., Childs, K. D., Furman, B. K. and Tiwari, S., J. Appl. Phys. 62, 3288 (1987).Google Scholar
47. Murakami, M., Price, W. H., Shih, Y. C., Braslau, N., Childs, K. D., and Parks, C. C., J. Appl. Phys. 62, 3295 (1987).Google Scholar
48. Murakami, M., Shih, Y. C., Price, W. H., and Wilkie, E. L., J. Appl. Phys. 64, 1974 (1988).Google Scholar
49. Murakami, M., Shih, Y. C., Braslau, N., Price, W. H., Childs, K. D. and Parks, C. C., Inst. Phys. Conf. Ser. 91, 55 (1988).Google Scholar
50. Murakami, M. and Price, W. H., Appl. Phys. Lett. 51, 664 (1987).Google Scholar
51. Murakami, M., Price, W. H., Greiner, J. H., and Feder, J. D., J. Appl. Phys. (1989) (in press).Google Scholar
52. Berger, H. H., Solid-State Electron. 15, 145 (1972).Google Scholar
53. Kim, H. J., Murakami, M., Norcott, M., and Price, W. H., unpublished.Google Scholar
54. Murakami, M., Shih, Y. C., Kim, H. J. and Price, W. H., Proc. of the 20th Int. Conf. Sol. Stat. Dev. Mat. D–2–3, 283 (1988).Google Scholar
55. Antypas, G.A., J. Electrochem. Soc. 117, 1393 (1970).Google Scholar
56. Darken, L. S., Trans. Met. Soc. AIME, 239, 80 (1967).Google Scholar
57. Ding, J., Washburn, J., Sands, T., and Keramidas, V. G., Appl. Phys. Lett. 49, 818 (1986).Google Scholar
58. Shih, Y. C., Murakami, M., and Price, W. H., J. Appl. Phys. (1989) (in press).Google Scholar
59. Kajiyama, K., Mizushima, Y. and Sakata, S., Appl. Phys. Lett. 23, 458 (1973).Google Scholar
60. Woodall, J. M., Freeouf, J. L., Pettit, G. D., Jackson, T. N., and Kirchner, P., J. Vac. Sci. Technol. 19, 626 (1981).Google Scholar
61. Marlow, G. S. and Das, M. B., Solid-State Electron. 25, 91 (1982).Google Scholar
62. Hansen, M. and Andeko, K., “Constitution of Binary Alloys”, McGraw-Hill, New York (1958).Google Scholar