Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-18T08:50:43.080Z Has data issue: false hasContentIssue false

Diffusion in Metallic Multilayers

Published online by Cambridge University Press:  15 February 2011

A. L. Greer*
Affiliation:
University of Cambridge, Department of Materials Science & Metallurgy, Pembroke Street, Cambridge CB2 3QZ, U.K.
Get access

Abstract

The use of metallic multilayers for diffusion measurements is reviewed. Experiments on epitaxial Ag/Au multilayers show that microstructural evolution can affect the measurements, but that nonetheless accurate determinations of lattice interdiffusivity can be made down to exceptionally low temperatures. Experiments on amorphous Ni-Zr multilayers show that with diffusional symmetry there can significant diffusion-induced stresses. Analysis of the interdiffusion kinetics as influenced by stress permits the determination of a range of materials parameters, including the diffusivities of individual species and plastic flow behaviour.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. DuMond, J. and Youtz, J.P., J. Appl. Phys. 11, 357 (1940).Google Scholar
2. Cook, H.E. and Hilliard, J.E., J. Appl. Phys. 40, 2191 (1969).Google Scholar
3. Greer, A.L., Ann. Rev. Mater. Sci. 17, 219 (1987).Google Scholar
4. Greer, A.L. and Spaepen, F., in Synthetic Modulated Structures, edited by Chang, L.L. and Giessen, B.C. (Academic, New York, 1985), pp. 419486.Google Scholar
5. Greer, A.L., in Diffusion Phenomena in Thin Films and Microelectronic Materials, edited by Gupta, D. and Ho, P.S. (Noyes, Park Ridge, 1988), pp. 146203.Google Scholar
6. Cook, H.E., Fontaine, D. de and Hilliard, J.E., Acta Metall. 17,765 (1969).Google Scholar
7. Menon, E.S.K. and Fontaine, D. de, Scripta Metall. Mater. 27, 395 (1992).Google Scholar
8. Philofsky, E.M. and Hilliard, J.E., J. Appl. Phys. 40, 2198 (1969).Google Scholar
9. Goldman, L.M., Ross, C.A., Ohashi, W., Wu, D. and Spaepen, F., Appl. Phys. Lett. 55, 2182 (1989).Google Scholar
10. Atzmon, M., Unruh, K.M. and Johnson, W.L., J. Appl. Phys. 58, 3865 (1985).Google Scholar
11. Somekh, R.E. and Barber, Z.H., J. Phys. E: Sci. Instrum. 21, 1029 (1988).Google Scholar
12. Somekh, R.E., J. Vac. Sci. Technol. A 2–3, 1285 (1984).Google Scholar
13. Somekh, R.E., Highmore, R.J., Page, K., Home, R.J. and Barber, Z.H., Mater. Res. Soc. Symp. Proc. 103, 29 (1988).Google Scholar
14. Stephenson, G.B., Defect Diffusion Forum 95–98, 507 (1993).Google Scholar
15. Greer, A.L., J. Magn. Magn. Mater. 126, 89 (1993).Google Scholar
16. Kolomets, I.D. and Smirnov, A.A., Fiz. Metal. Metalloved, 14, 3 (1962).Google Scholar
17. Yang, F.-L., Somekh, R.E. and Greer, A.L., to be submitted to Thin Solid Films.Google Scholar
18. Cook, H.E., J. Phys. Chem. Solids 30, 2427 (1969).Google Scholar
19. Bartels, A., Kemkes, C. and Lucke, K., Acta Metall. 33, 1887 (1985).Google Scholar
20. Greer, A.L., Karpe, N. and Bottiger, J., J. Alloys Compounds 194, 199 (1993).Google Scholar
21. Stephenson, G.B., Acta Metall. 36, 2663 (1988).Google Scholar
22. Yang, F.-L., Shih, W.-C. and Greer, A.L., Mater. Res. Soc. Symp. Proc. 356, in press.Google Scholar
23. Greer, A.L., in Proc. 4th Int. Workshop on Non-Crystalline Solids, edited by Vasquez, M. and Hernando, A. (World Scientific, Singapore), in press.Google Scholar
24. Mizoguchi, T. and Murata, M., Jap. J. Appl. Phys. 30, 1818 (1991).Google Scholar
25. Johnson, W.A., Trans. AIME 147, 331 (1942).Google Scholar
26. Hahn, H., Averback, R.S. and Rothman, S.J., Phys. Rev. B 33, 8825 (1986).Google Scholar
27. Hoshino, K., Averback, R.S., Hahn, H. and Rothman, S.J., J. Mater. Res. 3, 55 (1988).Google Scholar
28. Hahn, H. and Averback, R.S., Phys. Rev. B 37, 6533 (1988).Google Scholar
29. Barbour, J.C., Phys. Rev. Lett. 55, 2872 (1985).Google Scholar
30. Wu, H.M. and Averback, R.S., Appl. Phys. Lett. 56, 2619 (1990).Google Scholar
31. Russew, K., Sommer, F., Duhaj, P. and Bakonyi, I., J. Mater. Sci. 27, 3565 (1992).Google Scholar