Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-17T22:22:06.115Z Has data issue: false hasContentIssue false

Diffusion of Ion Implanted Mg and Be in GaAs

Published online by Cambridge University Press:  25 February 2011

H. G. Robinson
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford CA 94305
M. D. Deal
Affiliation:
Center for Integrated Systems, Stanford University, Stanford CA, 94305
D. A. Stevenson
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford CA 94305
Get access

Abstract

Annealed Mg implants into GaAs show three diffusion regions: 1) rapid uphill diffusion in the peak of the implant; 2) rapid concentration-independent diffusion in the tail; and 3) slow concentration-dependent diffusion in between. Implanted Be, in contrast, exhibits only concentration-dependent diffusion. Constant Fermi level experiments show that this diffusion is actually hole-dependent. Uphill diffusion can be induced in Be implants by co-implanting with a heavier element such as Ar. Paradoxically, this retards the concentration-dependent diffusion. This behavior can be explained with the Substitutional-Interstitial-Diffusion (SID) mechanism and an understanding of the defect chemistry after implantation. In the region of uphill diffusion, the dopants are seen to getter from areas of excess Ga interstitials toward areas of excess Ga vacancies. The magnitude of the Ga interstitial gradient with respect to the dopant concentration is shown to be critical for the uphill diffusion. The reduction in concentration-dependent diffusion with co-implants is thought to be caused by implant damage allowing dopant atoms to shift from interstitial to substitutional sites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Zolch, R., Rysell, H., Kranz, H., Reich, H. and Ruge, I., in Ion Implantation in Semiconductors, edited by Chernow, F., Borders, J. A. and Brice, D. K. (Plenum, New York, 1977), p. 593.Google Scholar
2 McLevige, W. V., Vaidyanathan, K. V., Streetman, B. G., Comas, J. and Plew, L., Sol. State Comm. 25, 1003 (1978).Google Scholar
3 Small, M. B., Potemski, R. M., Reuter, W. and Ghez, R., Appl. Phys. Lett. 41, 1608 (1982).Google Scholar
4 Yeo, Y. K., Park, Y. S., Pedrotti, F. L. and Choe, B. D., J. Appl. Phys. 53, 6148 (1982).Google Scholar
5 Kanber, H., Feng, M. and Whelan, J. M., SPIE 463, 67 (1984).Google Scholar
6 Duhamel, N., Daoud-Ketata, K., Descouts, B., Krauz, P., Gauneau, M. and Godefroy, S., J. Elect. Mats. 15, 377 (1986).Google Scholar
7 Naik, I. A., J. Electrochem Soc. 134, 1270 (1987).Google Scholar
8 Humer-Hager, T. and Zwicknagl, P., Jap. J. Appl. Phys. 22, 428 (1988).Google Scholar
9 Baratte, H., Jackson, T. N., Sadana, D. K., Degelormo, J. F., Scilla, G. J. and Cordone, F., presented at MRS fall meeting, symposium W, Advances in Materials. Processing and Devices in Ш-V Compound Semiconductors (1988).Google Scholar
10 Deal, M. D. and Robinson, H. G., Appl. Phys. Lett. 55, 996 (1989).Google Scholar
11 Deal, M. D. and Robinson, H. G., Appl. Phys. Lett. 55, 1990 (1989).Google Scholar
12 Deal, M. D., Hansen, S. E. and Sigmon, T. W., IEEE Trans. Computer-Aided Design 8, 939 (1989).Google Scholar
13 Ghandhi, S. K., VLSI Fabrication Principles. (John Wiley & Sons, New York, 1983).Google Scholar
14 Tuck, B., Introduction to Diffusion in Semiconductors, (Pereginus, Stevenage, 1974).Google Scholar
15 Gösele, U. M., Ann. Rev. Mater. Sci. 18, 257 (1988).Google Scholar
16 Nix, W. D. (private communication).Google Scholar
17 Robinson, H. G., Deal, M. D. and Stevenson, D. A., accepted for publication in Appl. Phys. Lett. (1989).Google Scholar
18 Sigmon, T. W. (private communication).Google Scholar