Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-19T15:39:51.619Z Has data issue: false hasContentIssue false

Direct Formation of C54 Phase on the Basis of C40 TiSi2 and Its Applications in Deep Sub-Micron Technology

Published online by Cambridge University Press:  21 March 2011

S. Y. Chen
Affiliation:
Department of Physics, National University of Singapore, 10 Kent Ridge Crescent, Singapore119260
Z. X. Shen
Affiliation:
Department of Physics, National University of Singapore, 10 Kent Ridge Crescent, Singapore119260
S. Y. Xu
Affiliation:
Department of Physics, National University of Singapore, 10 Kent Ridge Crescent, Singapore119260
A. K. See
Affiliation:
Chartered Semiconductor Manufacturing Ltd., 60 Woodlands Industrial Park D, Street 2, Singapore738406
L. H. Chan
Affiliation:
Chartered Semiconductor Manufacturing Ltd., 60 Woodlands Industrial Park D, Street 2, Singapore738406
W. S. Li
Affiliation:
Chartered Semiconductor Manufacturing Ltd., 60 Woodlands Industrial Park D, Street 2, Singapore738406
Get access

Abstract

A simple and novel salicidation process applying pulsed laser annealing as the first annealing step was used to induce TiSi2 formation. Both Raman spectroscopy and transmission electron microscope results confirm the formation of a new phase of Ti disilicide, the pure C40 TiSi2 after laser irradiation. Direct C54 phase growth on the basis of C40 template bypassing the C49 phase is accomplished at the second annealing temperature as low as 600°C. Line width independent formation of the C54 phase was observed on patterned wafers using this salicidation process and “fine line effect” is thus eliminated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Roy, R. A., Cabral, C. Jr, and Lavoie, C., Mat. Res. Soc. Symp. Proc. 564, 35 (1999).Google Scholar
2. Maex, K., Mater. Sci. & Eng. R11, 53 (1993).Google Scholar
3. Harper, J. M. E., Cabral, C. Jr and Lavoie, C., Annu. Rev. Mater. Sci. 30, 523 (2000).Google Scholar
4. Maex, K., deKeersmaecker, R. F., Rossum, M. van, Weg, W. F. van der, and Krooshot, G., Le Videles Couches Minces 42, 141 (1987).Google Scholar
5. Kuwano, H., Phillips, J. R., and Mayer, J. W., Appl. Phys. Lett. 56, 440 (1990).Google Scholar
6. Cabral, C. Jr, Clevenger, L. A., Harper, J. M. E., d'Heurle, F. M., and Roy, R. A., Appl. Phys. Lett. 71, 3531 (1997).Google Scholar
7. Mann, R. W., Miles, G. L., Knotts, T. A., Rakowski, D. W., Clevenger, L. A., Harper, J. M. E., d'Heurle, F. M., and Cabral, C. Jr, Appl. Phys. Lett. 67, 3729 (1995).Google Scholar
8. Kittl, J. A., Hong, Q. Z., Yang, H., Yu, N., Samavedam, S. B. and Gribelyuk, M. A., Thin Solid Films 73, 900 (1998).Google Scholar
9. Mouroux, A., Epicier, T., Zhang, S.-L., and Pinard, P., Phy. Rev. B 60, 9156 (1999).Google Scholar
10. Chen, S. Y., Shen, Z. X., Li, K., See, A. K. and Chan, L. H., Appl. Phys. Lett. 77, 4395 (2000).Google Scholar
11. Chen, S. Y., Shen, Z. X., Chen, Z. D., Chan, L. H. and See, A. K., Appl. Phys. Lett. 75, 1727 (1999).Google Scholar
12.Standard JCPD diffraction pattern 38-0483 [hexagonal TaSi2], JCPDS-International Center for Diffraction Data, PDF-2 Database, Newton Square, PA 19073-3273, USA.Google Scholar