Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-29T19:29:11.093Z Has data issue: false hasContentIssue false

Large Scale Engineered Nanostructured Surfaces by Reactive Ion Etching with Kinetically Self-Assembled Non-continuous Metal Film as Etching Mask

Published online by Cambridge University Press:  01 February 2011

Wei Wei
Affiliation:
Department of Chemical Engineering and Materials Science Integrated Nanosystems Research Facilities, Henry Samueli School of Engineering University of California, Irvine Irvine, California 92697
Mark Bachman
Affiliation:
Department of Electrical Engineering and Computer Science Integrated Nanosystems Research Facilities, Henry Samueli School of Engineering University of California, Irvine Irvine, California 92697
Guann-Pyng Li
Affiliation:
Department of Chemical Engineering and Materials Science Department of Electrical Engineering and Computer Science Integrated Nanosystems Research Facilities, Henry Samueli School of Engineering University of California, Irvine Irvine, California 92697
Get access

Abstract

In this study, we explored the possibility of using annealed non-continuous metal film enabled etching technique to produce large nano-structured surfaces. Non-continuous Ag film is deposited on silicon wafer with a thin layer of silicon dioxide using E-beam deposition, and then vacuum thermal annealing was applied on the deposited films, causing nano-scaled Ag particles to migrate and agglomerate into self-assembled islands of larger nanometer dimensions. We controlled the density and average size of the metal islands through thickness of the initial film and subsequent annealing rates. Reactive ion etching through the metal islands mask into the underneath silicon dioxide layer was performed following the annealing process. Preliminary hydrophobicity experiments were carried out using the engineered nano-structured surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cottin-Bizonne, C., Barrat, J. L., Bocquet, L., and Charlaix, E., Nat. Mater. 2, 237 (2003).Google Scholar
2. Kim, J. and Kim, C. J., Proc. IEEE Conf. MEMS, 2002, Las Vegas, Nevada, pp. 479482.Google Scholar
3. Velev, O. D. and Kaler, E. W., Langmuir. 15, 3693 (1999).Google Scholar
4. Shi, H., Tsai, W. B., Garrison, M. D., Ferrari, S., and Ratner, B. D., Nature. 398, 593 (1999).Google Scholar
5. Gotza, M., Dutoit, M., and Iiegemes, M., J. Vac. Sci. Technol. B. 16, 582 (1998).Google Scholar
6. Huq, S. E., Grayer, G. H., Moon, S. W., and Prewett, P. D., Mater. Sci. Eng. B. 51, 150 (1998).Google Scholar
7. Wellner, A., Preece, P. R., Fowler, J. C., and Palmer, R. E., Microelectron. Eng. 57, 919 (2001).Google Scholar
8. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
9. Ramos, S. M. M. and Charlaix, E., Phys. Rev. E. 67, 031604 (2003).Google Scholar
10. Schulz, F., Franzka, S., and Schmid, G., Adv. Funct. Mater. 12, 532 (2002).Google Scholar
11. Masuda, H., and Fukuda, K., Science. 268, 1466 (1995).Google Scholar
12. Palmer, R. E., Pratontep, S., and Boyen, H. G., Nat. Mater. 2, 443 (2003).Google Scholar
13. Han, S., Yang, S. A., Hwang, T., Lee, J., Lee, J. D., and Shin, H., J. J. Appl. Phys. 39, 2556, (2000).Google Scholar
14. Brodie, I., and Muray, J. J., The Physics of Micro/Nano-Fabrication, Plenum Press, New York (1992).Google Scholar
15. Kundu, S., Hazra, S., Banerjee, S., Sanyal, M. K., Mandal, S. K., Chaudhuri, S., and Pal, A. K., J. Phys. D: Appl. Phys. 31, L73 (1998).Google Scholar
16. Zur, A., and McGill, T. C., J. Appl. Phys. 55, 378 (1984).Google Scholar
17. Doraiswamy, N., Jayaram, G., and Marks, L. D., Phys. Rev. B. 51, 10167 (1995).Google Scholar
18. Knauer, W., J. Appl. Phys. 62, 841 (1987).Google Scholar
19. Schuermeyer, F. L., Chase, W. R., and King, E. L., J. Vac. Sci. Tehnol. 9, 330 (1971).Google Scholar
20. Schuermeyer, F. L., Chase, W. R., and King, E. L., J. Appl. Phys. 42, 5856 (1971).Google Scholar
21. Wenzel, R. N., Ind. Eng. Chem. 28, 988 (1936).Google Scholar
22. Cassie, A. B. D., Baxter, S., Trans. Faraday Soc. 40, 546 (1944).Google Scholar
23. Dettre, R. H., Johnson., R.E. Adv. Chem. Ser. 43, 136 (1963).Google Scholar