Hostname: page-component-68945f75b7-gkscv Total loading time: 0 Render date: 2024-08-06T09:14:01.287Z Has data issue: false hasContentIssue false

Domain Images and Retention Properties of Pb(Zr,Ti)O3 Thin Films Observed by Electrostatic Force Microscopy

Published online by Cambridge University Press:  10 February 2011

William Jo
Affiliation:
Devices and Materials Laboratory, LG Corporate Institute of Technology, Seoul 137–724, Korea Present address: Edward L. Ginzton Lab. Stanford University, Stanford, CA94305–4085, Electronic mail: wmjo@loki.stanford.edu
D. C. Kim
Affiliation:
Devices and Materials Laboratory, LG Corporate Institute of Technology, Seoul 137–724, Korea
J. W. Hong
Affiliation:
PSIA Corporation, Yang-Jae Dong 5–6, Seoul 137–070, Korea
Get access

Abstract

We report results on domain retention in preferentially oriented Pb(Zr,Ti)O3 (PZT) thin films on Pt and on LaNiO3 (LNO) electrodes. Effects of bottom electrodes on domain images and retention properties have been explored by detecting an electrostatic force exerted on the biased conductive probe. It was demonstrated that polarization loss of PZT crystallites on LNO appears to be less than that of PZT grains on Pt. Moreover, charge retention was controlled by a reverse-poling protocol during electrostatic force microscopy (EFM) measurements. The surface charge density of the PZT films was observed as a function of time in a selected area where a region is single-poled and another region is reverse-poled. The retention behavior of the regions is very different; the single-poled region shows a declined response and the reverse-poled region reveals a retained characteristic. Decay and retention mechanisms are explained by space-charge redistribution and trapping of defects in the films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cooper, E. B., Manalis, S. R., Fang, H., Dai, H., Matsumoto, K., Minne, S. C., Hunt, T., and Quate, C. F, Appl. Phys. Lett. 75, 3566 (1999).Google Scholar
2. Binnig, G., Despont, M., Drechsler, U., Haeberle, W., Lutwyche, M., Vettinger, P., Mamin, H. J., Chui, B. W., and Kenny, T. W, Appl. Phys. Lett. 74, 1329 (1999).Google Scholar
3. Kolosov, O., Gruverman, A., Hatano, J., Takahashi, K., and Tokumoto, H., Phys. Rev. Lett. 74, 4309 (1995).Google Scholar
4. Hidaka, T., Maruyama, T., Saitoh, M., Mikoshiba, M., Shimizu, M., Shiosaki, T., Wills, L. A., Hiskes, R., Dicarolis, S. A., and Amano, J., Appl. Phys. Lett. 68, 2358 (1996).Google Scholar
5. Gruverman, A., Tokumoto, H., Prakash, A. S., Aggarwal, S., Yang, B., Wuttig, M., Ramesh, R., Auciello, O., and Venkatesan, T., Appl. Phys. Lett. 71, 3492 (1997).Google Scholar
6. Hong, J. W., Jo, W., Kim, D. C., Nam, H. J., Cho, S. M., Lee, H. M., and Bu, J. U., Appl. Phys. Lett. 75, 3183 (1999).Google Scholar
7. Auciello, O., Foster, C. M., and Ramesh, R., Annu. Rev. Mater. Sci. 28, 501 (1998)..Google Scholar
8. Gruverman, A., Auciello, O., and Tokumoto, H., Appl. Phys. Lett. 69, 3191 (1996).Google Scholar
9. Jo, W., Kim, D. C., Lee, H. M., and Kim, K. Y., Mater. Res. Symp. Soc. Proc. 433, 57 (1996).Google Scholar
10. Chen, M.-S., Wu, T.-B., and Wu, J.-M., Appl. Phys. Lett. 68, 1430 (1996).Google Scholar
11. Hong, J. W., Park, S. I., and Khim, Z. G., Rev. Sci. Instrum. 70, 1735 (1999).Google Scholar
12. Hong, J. W., Koh, K. H., Park, S. I., Kwun, S. I. and Kbim, Z. G., Phys. Rev. B68, 5078 (1998).Google Scholar
13. Franke, K., Besold, J., Haessler, W., and Seegebarth, C., Surf. Sci. Lett. 302, L283 (1994).Google Scholar
14. Pike, G. E., Warren, W L, Dimos, D., Tuttle, B. A., Ramesh, R., Lee, J., Keramidas, V. G., and Evans, J. T. Jr Appl. Phys. Lett. 66, 484 (1995).Google Scholar
15. Warren, W. L., Dimos, D., Pike, G. E., Tuttle, B. A., Raymond, M. V., Ramesh, R., and Evans, J. T. Jr Appl. Phys. Lett. 67, 866 (1995).Google Scholar
16. Mehta, R. R., Silverman, B. D., and Jacobs, J. T., J. Appl. Phys. 44, 3379 (1973).Google Scholar
17. Benedetto, J. M., Moore, R. A., and McLean, E B., J. Appl. Phys. 75, 460 (1994).Google Scholar
18. Shimada, Y., Nakao, K., Inoue, A., Azuma, M., Uemoto, Y., Fuji, E., and Otsuki, T., Appl. Phys. Lett. 71, 2538 (1997).Google Scholar
19. Jenkins, I. G., Song, T. K., Madhukar, S., Prakash, A. S., Aggarwal, S., and Ramesh, R., Appl. Phys. Lett. 72, 3300 (1998).Google Scholar
20. Kakalios, J., Street, R. A., and Jackson, W. B., Phys. Rev. Lett. 59, 1037 (1987).Google Scholar
21. Park, B. H., Noh, T. W, Lee, J., Kim, C-Y., and Jo, W., Appl. Phys. Lett. 70, 1101 (1997).Google Scholar