Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-13T04:45:13.057Z Has data issue: false hasContentIssue false

Domain Wall Magnetoresistance and Complex magnetic Response in Antiferromagnetically Coupled Fe/Cr Multilayers

Published online by Cambridge University Press:  10 February 2011

F. G. Aliev
Affiliation:
Dpto. de Física de la Materia Condensada, C-III, Universidad Autónoma de Madrid, 28049, Madrid, Spain
R. Villar
Affiliation:
Dpto. de Física de la Materia Condensada, C-III, Universidad Autónoma de Madrid, 28049, Madrid, Spain
R. Schad
Affiliation:
CMIT, University of Alabama, Tuscaloosa, USA
J. L. Martinez
Affiliation:
Instituto de Ciencia de Materiales Madrid, CSIC, Cantoblanco, 28049, Madrid, Spain
Get access

Abstract

For antiferromagnetically coupled Fe/Cr(100) multilayers the low field contribution to the resistivity, which is caused by the domain walls (DWs), is strongly enhanced at low temperatures. The low temperature resistivity increases approximately according to a power law with the exponent 0.7–1. This behaviour can be explained by the suppression of anti-localization effects by the nonuniform gauge fields caused by the domain walls. Analyses of complex low frequency magnetic susceptibility shows an enhancement of the magnetic losses at low magnetic fields, which may be related to the AC field induced DWs movement. At low temperatures (T<100K) DWs become pinned. For frequencies (102<f< 103) Hz at temperatures below 10K, this hysteretic low field peak in the magnetic losses transforms to a non-hysteretic dip for |H|< 20 Oe, indicating a possible qualitative change in the dynamics of the DWs. The frequency dependence of the dissipation at 2K, may be reasonably well fitted by the expression that describes the losses of a damped oscillator with a single relaxation time of about 10-4 sec.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Berger, L., J. Appl. Phys. 49, 2156 (1978).Google Scholar
[2] Gider, S., et al., Science 281, 797 (1998).Google Scholar
[3] Rüdiger, U., et al., Phys. Rev. Lett. 80, 5639 Google Scholar
[4] Gregg, J.F., et al., Phys. Rev. Lett. 77, 1580 (1996).Google Scholar
[5] Rüediger, U., et al., Phys. Rev. B 59, 11914 (1999).Google Scholar
[6] Viret, M., et al., Phys. Rev. Lett. 85, 3962 (2000).Google Scholar
[7] van Hoff, J.B.A.N., et al., Phys. Rev. B 59, 138 (1999).Google Scholar
[8] Tatara, G., Fukuyama, H., Phys. Rev. Lett. 78 3773 (1997).Google Scholar
[9] Lyanda-Geller, Y., et al., Phys. Rev. Lett. 81 3215 (1998).Google Scholar
[10] Aliev, F.G., et al., Phys. Rev. Lett., 88, 187201 (2002).Google Scholar
[11] Aliev, F.G., et al., to be published.Google Scholar
[12] Aliev, F.G., Schad, R., Volodin, A., van Haesendonck, C., Bruynseraede, Y., Villar, R., J.M.@M.M., 226–230, 745 (2001).Google Scholar
[13] Stamp, P.C.E., Chudnovskii, E.M. and Barbara, B., Int. J. Mod. Phys. 6, 1355 (1992).Google Scholar
[14] Lee, P., Ramakrishnan, T.V., Rev. Mod. Phys. 57 287 (1985).Google Scholar
[15] Knap, W. et al., Phys. Rev. B 53, 3912 (1996).Google Scholar