Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-10-06T08:18:58.475Z Has data issue: false hasContentIssue false

Doping Effects in Co-deposited Mixed Phase Films of Hydrogenated Amorphous Silicon Containing Nanocrystalline Inclusions

Published online by Cambridge University Press:  01 February 2011

Xiaodong Pi
Affiliation:
xdpi@me.umn.edu, University of Minnesota, Mechanical Engineering, 111 Church Street S.E., University of Minnesota, minneapolis, MN, 55455, United States
U. Kortshagen
Affiliation:
korts001@umn.edu, University of Minnesota, Mechanical Engineering, 111 Church Street S.E., University of Minnesota, minneapolis, MN, 55455, United States
J. Kakalios
Affiliation:
kakalios@umn.edu, University of Minnesota, Physics and astronomy, 116 Church Street S.E., University of Minnesota, minneapolis, MN, 55455, United States, 612624-9856, 612-624-4578
Get access

Abstract

Hydrogenated amorphous silicon films containing silicon nanocrystalline inclusions (a/nc-Si:H) that have been n-type doped have been synthesized using a dual-plasma co-deposition system. We report the structural and electronic properties of n-type doped a/nc-Si:H as a function of phosphine doping level and nanocrystalline concentration. The volume fraction of nanocrystals in the doped a/nc-Si:H thin films is measured using Raman spectroscopy, and the hydrogen binding configurations are characterized using infra-red absorption spectroscopy. In undoped a/nc-Si:H, the inclusion of low and moderate nanocrystalline concentrations results in an increase in the dark conductivity, compared to a-Si:H films grown without nanocrystalline inclusions. In contrast, the addition of even a low concentration of silicon nanoparticles in doped a/nc-Si:H thin films leads to a decrease in the dark conductivity and photoconductivity, compared to pure a-Si:H films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cabarrocas, P. Rocai, Morral, A. Fontcubertai, and Poissant, Y. Thin Solid Films 403-404, 39 (2002).Google Scholar
2. Wronski, C. R. Pearce, J. M. Koval, R. J. Niu, X. Ferlauto, A. S. Koh, J. and Collins, R. W. Mater. Res. Soc. Symp. Proc. 715, 459 (2002).Google Scholar
3. Lubianiker, Y. Cohen, J. D. Jin, H.C. Abelson, J.R. Phys. Rev. B 60, 4434 (1999); D. Kwon, C.C. Chen J. D. Cohen H.C. Jin E. Hollar, I. Robertson, J. R. Abelson Phys. Rev. B 60, 4442 (1999).Google Scholar
4. Wronski, C. R. Pearce, J. M. Koval, R. J. Niu, X. Ferlauto, A. S. Koh, J. and Collins, R. W. Mater. Res. Soc. Symp. Proc. 715, A13.4.1 (2002).Google Scholar
5. Yang, J. Lord, K. Guha, S. Ovshinski, S. R. Mater. Res. Soc. Proc. 609, A15.4.1 (2000).Google Scholar
6. Collins, R. W. Ferlauto, A. S. Ferreira, G. M. Joohyun, K. Mater. Res. Soc. Proc. 762, A. 10.1 (2001).Google Scholar
7. Thompson, S. Perrey, C. R. Carter, C. B. Belich, T. J. Kakalios, J. Kortshagen, U. J. Appl. Phys. 97, 34, 310 (2005).Google Scholar
8. Blackwell, C. Anderson, C. Deneen, J. Carter, C. B. Kortshagen, U. and Kakalios, J. Mater. Res. Soc. Proc. 910, 181 (2006).Google Scholar
9. Anderson, C. Blackwell, C. Deneen, J. Carter, C. Barry, Kakalios, J. and Kortshagen, U. Mater. Res. Soc. Proc. 910, 79 (2006).Google Scholar
10. Adjallah, Y. Blackwell, C. Anderson, C. Kortshagen, U. and Kakalios, J. Mater. Res. Soc. Proc., this volume (2008).Google Scholar
11. Lucovsky, G. Nemanich, R. J. and Knights, J. C. Phys. Rev. B 19, 2064 (1979).Google Scholar
12. Viera, G. Huet, S. and Boufendi, L. J. Appl. Phys. 90, 4175 (2001); R. Saleh and N. H. Nickel Thin Solid Films 427, 266 (2003).Google Scholar
13. Bhattacharya, E. and Mahan, A. H. Appl. Phys. Lett. 52, 1587 (1988).Google Scholar
14. Quicker, D. and Kakalios, J. Phys. Rev. B 60, 2449 (1999).Google Scholar
15. Marra, D. C. Edelberg, E. A. Naone, R. L. and Aydil, E. S. J. Vac. Sci. and Tech. 16, 3199 (1998).Google Scholar
16. Staebler, D. L. and Wronski, C.R., Appl. Phys. Lett. 31, 292 (1976); J. Appl. Phys. 51, 3262 (1980).Google Scholar
17. Kakalios, J. and Street, R. A. Phys Rev. B 34, 6014 (1986).Google Scholar