Article contents
Doping of Diamond by Co-Implantation with Dopant Atoms and Carbon
Published online by Cambridge University Press: 26 February 2011
Abstract
We have investigated the challenging problem of doping diamonds, by co-implanting boron, nitrogen or phosphorus together with carbon into natural insulating type -a1 diamonds. All the implantations were done at liquid nitrogen temperature and then the samples were rapidly heated to 1100 °C. Unlike the previous attempts to dope diamond by room temperature or high temperature ion implantations, this method is expected to yield a higher doping efficiency for the implanted atoms. We have characterized the implanted diamonds with electrical and electron spin resonance (EPR) measurements. Boron doped samples showed low electrical resistivities and the EPR signal showed a strong dependence on the boron fluence, indicating a high substitutional fraction of boron atoms. The samples in which nitrogen and phosphorus were co-implanted with carbon showed lower resistivities compared with samples implanted with carbon only. Preliminary thermo-emf measurements indicated n-type conduction in these samples.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1990
References
REFRENCES
- 2
- Cited by