Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-12T11:31:38.171Z Has data issue: false hasContentIssue false

Drawing or Photon Induced Defects in Silica Based Waveguides

Published online by Cambridge University Press:  25 February 2011

H. Kawazoe*
Affiliation:
Department of Inorganic Materials, Tokyo Institute of Technology, Ohokayama, Meguro-ku, Tokyo 152, JAPAN
Get access

Abstract

A model reaction is proposed which can totally explain formation of the defects detected in SiO2: GeO2 glasses such as E', NBOHC, T-T, bonding, peroxy linkages, and T=O or T(II) species, where T is Si or Ge. The initial reaction is radical decomposition of T-O bonds at high temperatures and the defects are products of the secondary reaction between the initial radical species. The net reaction is expressed as 2TO2⇄2TO+O2, which predicts the dependence of concentration of the radical species on PO2 during processing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Friebele, E. J., Sigel, G. H. Jr., and Griscom, D. L., Appl. Phy. Lett. 28, 516 (1976).Google Scholar
2. Meaudre, M. and Meaudre, R., J. Non-crystalline Solids 68, 281 (1984).Google Scholar
3. Griscom, D. L., J. Non-crystalline Solids 73, 51 (1985).Google Scholar
4. Griscom, D. L., J. Non-crystalline Solids 68, 301 (1984).Google Scholar
5. Tanifuji, T., Matsumoto, M., Tokuda, M. and Miyauchi, M., Electron Lett. 20, 13 (1984).Google Scholar
6. Hibino, Y. and Hanafusa, H., Jap. J. Appl. Phys. 22, L766 (1983).Google Scholar
7. Kordas, G., Weeks, R. A. and Kinser, D. L., J. Appl. Phys. 54 5394 (1983).Google Scholar
8. Weeks, R. A. and Purcell, T., J. Chem. Phys. 43, 483 (1965).Google Scholar
9. Watanabe, Y., Kawazoe, H., Shibuya, K. and Muta, K., Jap. J. Appl. Phys. 25, 425 (1986).Google Scholar
10. Hanafusa, H., Hibino, Y. and Yamamoto, F., J. Appl. Phys. 58 1356 (1985).Google Scholar
11. Hibino, Y., Hanafusa, H. and Yamamoto, F., Electron Lett. 22, 434 (1986).Google Scholar
12. Hibino, Y. and Hanafusa, H., J. Appl. Phys. in press.Google Scholar
13. Kohketsu, M., Kawazoe, H., Kashiwazaki, A. and Muta, K., MRS Symp. Proc. this issue.Google Scholar
14. Kashiwazaki, A., Muta, K., Kohketsu, M. and Kawazoe, H., MRS Symp. Proc. this issue.Google Scholar
15. Edwards, A. H. and Fowler, W. B., Phys. Rev. B26, 6649 (1982).Google Scholar
16. Friebele, E. J. and Griscom, D. L., “Radiation Effects in Glass” in Treatise on Materials Science and Technology Vol.17 Glass II, Edited by Tomozawa, M. and Doremus, R. H., Academic, N.Y. pp. 257351 (1979).Google Scholar
17. Friebele, E. J., Griscom, D. L. and Sigel, G. H. Jr., J. Appl. Phys. 45, 3424 (1974).Google Scholar
18. Philipp, H. R., Solid State Commun. 4, 73 (1966); L. Pajasova, Czech. J. Phys. 19 1265 (1969).Google Scholar
19. Griscom, D. L. and Friebele, E. J., Private communication.Google Scholar
20. Kawazoe, H. and Watanabe, Y., unpublished.Google Scholar