Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-22T02:16:08.009Z Has data issue: false hasContentIssue false

Dry Etch Damage in GaAs P-N Junctions

Published online by Cambridge University Press:  26 February 2011

S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
C. R. Abernathy
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
T. R. Fullowan
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. R. Lothian
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

GaAs p-n junction mesa-diode structures were fabricated so that both n- and p-type layers could be simultaneously exposed to either O2 or H2 discharges. This simulates the ion bombardment during plasma etching with either CCl2F2/O2 or CH4/H2 mixtures. The samples were exposed to 1 mTorr discharges for period of 1–20 min with DC biases of -25 to -400V on the cathode. For O2 ion bombardment, the collector resistance showed only minor (≤10%) increases for biases up to -200 V and more rapid increases thereafter. In our structure, this indicates that bombardment-induced point defects penetrate at least 500 Å of GaAs for ion energies of ≥200eV. The base resistance displayed only a minor increase (∼10%) over the pre-exposure value even for O+ ion energies of 375 eV, due to the very high doping (1020 cm−3 ) in the base. More significant increases in both collector and base resistances were observed for hydrogen ion bombardment due to hydrogen passivation effects. We will give details of this behaviour as a function of ion energy, plasma exposure time and post-treatment annealing temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Abemathy, C. R., Pearton, S. J., Caruso, R., Ren, F. and Kovalchick, J., Appl. Phys. Lett. 55 1750 (1984).CrossRefGoogle Scholar
2. Tokumitsu, E., Kudo, Y., Konagai, M. and Takakashi, K., Jap. J. Appl. Phys. 24 1189 (1985).Google Scholar
3. Weyers, M., Putz, N., Heinecke, H., Heyen, M., Luth, H. and Balk, P., J. Electron. Mater. 15 57 (1986).CrossRefGoogle Scholar
4. Kim, M. E., Bayraktaroglu, B. and Gupta, A. in HEMTs and HBTs: Devices Fabrication and Circuits, ed. Ali, F. and Gupta, A. (Artech House, Boston, 1991).Google Scholar
5. Nozaki, S., Miyake, R., Yamada, T., Konagai, M. and Takahasti, K., Jap. J. Appl. Phys. 29 L1731 (1990).Google Scholar
6. SIMS measurements by Evans East, Inc., Plainsboro, NJ 08536.Google Scholar
7. Constantine, C., Johnson, D., Pearton, S. J., Chakrabarti, U. K., Emerson, A. B., Hobson, W. S. and Kinsella, A. P., J. Vac. Sci. Technol. B 8 596 (1990).Google Scholar
8. Pearton, S. J., Mat. Sci. Reports 4 313 (1990).CrossRefGoogle Scholar
9. Pearton, S. J., Corbett, J. W. and Shi, T. S., Appl. Phys. A 43 153 (1987).Google Scholar
10. Synman, H. C. and Neethling, T. H., Rad. Eff. 69 199 (1983).CrossRefGoogle Scholar
11. Wang, J. S., Fonash, S. J. and Ashok, S., IEEE Electron Dev. Lett. EDL-4 432 (1983).CrossRefGoogle Scholar
12. Kwan, P., Bhat, K. N., Borrego, J. M. and Ghandi, S. K., Solid-State Electron. 26 125 (1983).Google Scholar