Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-10-05T13:02:51.826Z Has data issue: false hasContentIssue false

Ebic Analysis of Hydrogen Passivation of Defects in Silicon

Published online by Cambridge University Press:  28 February 2011

J.I. Hanoka
Affiliation:
Mobil Solar Energy Corporation, 16 Hickory Drive, Waltham, Mass. 02254.
C.E. Dube
Affiliation:
Mobil Solar Energy Corporation, 16 Hickory Drive, Waltham, Mass. 02254.
D.B. Sandstrom
Affiliation:
Mobil Solar Energy Corporation, 16 Hickory Drive, Waltham, Mass. 02254.
Get access

Abstract

EBIC evidence of the key role of dislocations in hydrogen passivation of EFG ribbon is presented. Dislocations, and not bulk point defects, are shown to be both the principal defect being passivated and the means whereby rapid thermal diffusion of hydrogen takes place. Passivation of dislocation arrays to depths of the order of hundreds of microns has been observed. Low stemperature EBIC (96°K < T < 300°K) has shown that shallow electron traps associated with dislocations and within ∼0.1 eV of the conduction band are not passivated while (proposed) deeper mid-gap levels at the same spatial location are readily passivated. A general dislocation model for hydrogen passivation applicable to all polycrystalline silicon is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Seager, C.H. and Ginley, D.S., Appl. Phys. Lett., 34, 337 (1979).Google Scholar
2. Hanoka, J.I., Seager, C.H., Sharp, D.J., and Panitz, J.K.G., Appl. Phys. Lett., 42, 618 (1983).Google Scholar
3. Seager, C.H., Sharp, D.J., Pamitz, J.K.G., and Hanoka, J. I., J.Phys. Colloq. C1 43, C1103 (1982).Google Scholar
4. Dubé, C., Hanoka, J.I., and Sandstrom, D.B., Appl. Phys. Lett., 44, 425 (1984).Google Scholar
5. Sardi, L., Ragghianti, D., Capizzi, M., Coluzza, C., dellaSsla, D., Frova, A., Prudenziati, N., and Davoli, P., Technical Digest of the First International Photovoltaic Solar Energy and Engineering Conference (published by Secretariat, International PVSEC-1, Tokyo, Japan), paper #A-IP-lO, p. 59, 1984.Google Scholar
6. DubE, C. and Hanoka, J. I., Appl. Phys. Lett., 45, p. 1135 (1984).Google Scholar
7. Micheels, R.H. and Rauh, R.D., J. Electrochem. Soc., 131, 217 (1984).Google Scholar
8. Micheels, R.H., Vaynan, Z., and Hanoka, J.I., Appl. Phys. Lett., 46, 414 (1954).Google Scholar
9. Cinley, David S. and Hellmer, R.P., 17th IEEE Photovoltaic Specialists Conference (IEEE: New York; 1984), p. 1213.Google Scholar
10. Wald, Fritz V., in: Crystals: Growth Properties and Applications, edited by Grabmaier, J. (Springer: Berlin; 1981), Vol. 5, pp. 147198.Google Scholar
11. Taylor, A.S., Stormont, R.W., Chao, C.C., and Henderson, E.J., 15th IEEE Photovoltaic Specialists Conference (IEEE: New York; 1981), p. 589.Google Scholar
12. Harper, J.M.E., Cuomo, J.J., and Kaufman, H.R., Ann. Rev. Mater. Sci., 13, 413 (1983).Google Scholar
13. Sandstrom, D.B. and Dubd, C., to be published.Google Scholar
14. Johnson, N.M., Biegelson, D.K., and Moyer, M.C., Appl. Phys. Lett., 40, 552 (1952).Google Scholar
15. Bell, R.O. and Hanoka, J.I., J. Appl. Phys., 53, 1741 (1982).Google Scholar
16. Benton, J.L., Doherty, C.J., Ferris, S.D., Flammn, D.L., Kimerling, L.C., and Leamy, H.J., Appl. Phys. Lett., 36, 670 (1980).Google Scholar
17. Pearton, S.J. and Haller, E.E., J. Appl. Physics, 54, 3613 (1983).Google Scholar
18. Pearton, S.J. and Tavendale, A.J., J. Appl. Physics, 5, 440 (1983).Google Scholar
19. Hanoka, J.I., Bell, R.O., and Bathey, B., in: Symposium on Electronic Optical Properties in Polycrystalline or Impure Semiconductors and Novel Crystal Growth Techniques, ed. by Ravi, K.V. and O'Mara, B. (The Electrochemical Society, Princeton, New Jersey, 1980).Google Scholar
20. Tsuo, Y. Simon and Milstein, Joseph B., Appl. Phys. Lett., 45, 971 (1984).Google Scholar
21. Wieringen, A. Van and Warmoltz, N., Physica, 22, 849 (1956).Google Scholar
22. Pohoryles, B., Phys. stat. sol.(a), 67, K75 (1981).Google Scholar
23. Zolotukhin, M.N., Kveder, V.V., and Yu, A. Osip'yan, Soy. Phys., JETP 55, 1189 (1982).Google Scholar
24. Belouet, C., in: Poly-Micro-Crystalline and Amorphous Semiconductors, MRS, ed. Pinard, P. and Kalbitzer, S. (les editions de Physique: Les Ulis; 1984).Google Scholar
25. Marklund, S., Physique, J. de, Colloque C4, 44, 25 (1983).Google Scholar
26. Heggie, M.I. and Jones, R., Colloque C4,, 44, 43 (1983).Google Scholar