Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-16T01:30:37.405Z Has data issue: false hasContentIssue false

The Effect of Hydrogen Dilution on the Hot-Wire Deposition of Microcrystalline Silicon

Published online by Cambridge University Press:  10 February 2011

H. N. Wanka
Affiliation:
Univ. Stuttgart, Inst. f. Physikalische Elektronik, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
R. Zedlitz
Affiliation:
Univ. Stuttgart, Inst. f. Physikalische Elektronik, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
M. Heintze
Affiliation:
Univ. Stuttgart, Inst. f. Physikalische Elektronik, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
M. B. Schubert
Affiliation:
Univ. Stuttgart, Inst. f. Physikalische Elektronik, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Get access

Abstract

The growth of amorphous (a-Si:H) and microcrystalline (pc-Si) silicon by hot-wire chemical vapor deposition (HWCVD) has been studied by combining in-situ ellipsometry, atomic force microscopy (AFM), and Raman spectroscopy. Generally a dense nucleation layer is formed during a-Si:H HWCVD, containing nuclei about 0.8 nm high and 10 to 20 nm in diameter. The surface roughness gradually increases with film thickness and settles at a root mean square (RMS) value of 1.6 nm at about 200 nm thickness. For hydrogen dilution at gas flow ratios x=[H2]/[SiH4] of 15 to 120 microcrystalline material was obtained. The grain size and nucleation layer, however, are strongly dependent on x. Low H2 dilution enhances the formation of an amorphous-like interface layer from which the μc-Si:H growth eventually starts. Increasing x promotes the etching of amorphous regions and the surface diffusion of precursors, resulting in larger nuclei. X = 30 yields extended μc-Si nuclei (30 nm height, 90 nm diameter) and a pronounced increase in surface roughness for thicker films, but suppresses the formation of the amorphous-like nucleation layer. A further increase in x remarkably lowers the growth rate, but smoother surfaces at comparable film thickness and larger lateral dimensions of the grains occur. This is interpreted as incipient etching of the crystallites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mahan, A.H., Carapella, J., Nelson, B.P., Crandall, R.S., and Balberg, I., J. Appl. Phys. 69, 6728 (1991).Google Scholar
2. Zedlitz, R., Kessler, F., and Heintze, M., J. Non-Cryst. Sol. 164–166, 83 (1993).Google Scholar
3. Papadopulos, P., Scholz, A., Bauer, S., Schroder, B., and Oechsner, H., J. Non-Cryst. Sol. 164–166, 87 (1993).Google Scholar
4. Molenbroek, E.C., Mahan, A.H., Johnson, E.J., and Gallagher, A.C., in Amorphous Silicon Technology, edited by Schiff, E.A., Hack, M., Madan, A., Powell, M., and Matsuda, A. (Mater. Res. Soc. Symp. Proc. 336, Pittsburgh, 1994) pp. 4348.Google Scholar
5. Matsumura, H., Jpn. J. Appl. Phys. 30, 1522 (1991).Google Scholar
6. Dusane, R.O., Dusane, S.R., Bhide, V.G., and Kshirsagar, S.T., Appl. Phys. Lett. 63, 2201 (1993).Google Scholar
7. Cifre, J., Bertomeu, J., Puigdollers, J., Polo, M.C., Andreu, J., and Lloret, A., Appl. Phys. A 59, 645 (1994).Google Scholar
8. Middya, A.R., Lloret, A., Perrin, J., Huc, J., Moncel, J.L., Parey, J.Y., and Rose, G., in Amorphous Silicon Technology, edited by Hack, M., Schiff, E.A., Madan, A., Powell, M., and Matsuda, A. (Mater. Res. Soc. Symp. Proc. 377, Pittsburgh, 1995) pp. 119124.Google Scholar
9. Wanka, H.N., Zedlitz, R., Heintze, M., and Schubert, M.B., Proc. 13th EC PVSEC, Nice, (1995) 1753.Google Scholar
10. Molenbroek, E.C., Johnson, E.J., and Gallagher, A.C., Proc. 13th EC PVSEC, Nice, (1995) 319.Google Scholar
11. Heintze, M., Zedlitz, R., Wanka, H.N., and Schubert, M.B., J. Appl. Phys. 79, (1996) 2699.Google Scholar
12. Santos, P.V., Johnson, N.M., Street, R.A., Phys. Rev. Lett. 67, 2686 (1991).Google Scholar
13. Guha, S., Yang, J., Jones, S.J., Chen, Y., Williamson, D.L., Appl. Phys. Lett. 61, 1444 (1992).Google Scholar
14. Williamson, D.L., in Amorphous Silicon Technology, edited by Hack, M., Schiff, E.A., Madan, A., Powell, M., and Matsuda, A. (Mater. Res. Soc. Symp. Proc. 377, Pittsburgh, 1995) pp. 251262.Google Scholar
15. Kwon, D., Cohen, J.D., Nelson, B.P., and Iwaniczko, E., in Amorphous Silicon Technology, edited by Hack, M., Schiff, E.A., Madan, A., Powell, M., and Matsuda, A. (Mater. Res. Soc. Symp. Proc. 377, Pittsburgh, 1995) pp. 301306.Google Scholar
16. Middya, A.R., Guillet, J., Bouree, J.E., and Perrin, J., Proc 4th POLYSE, Gargnano Italy, (1995) in print.Google Scholar
17. Puigdollers, J., Cifre, J., Polo, M.C., Asensi, J.M., Bertomeu, J., Andreu, J., and Lloret, A., Appl. Surf. Sci. 86, (1995) 600.Google Scholar
18. Meier, J., Dubail, S., Fliuckiger, R., Fischer, D., Keppner, H., and Shah, A., Proc. Ith IEEE WCPEC, Hawaii, (1994) 409.Google Scholar
19. Matsumura, H., Hosoda, Y., and Furukawa, S., in Amorphous Silicon Technology, edited by Schiff, E.A., Hack, M., Madan, A., Powell, M., and Matsuda, A. (Mater. Res. Soc. Symp. Proc. 336, Pittsburgh, 1994) pp. 3742.Google Scholar
20. Collins, R.W. and Yang, B.Y., J. Vac. Sci. Technol. B 7 (5), 1155 (1989).Google Scholar
21. Cabarrocas, P.Roca i, Layadi, N., Heitz, T., Drevillon, B., and Solomon, I., Appl. Phys. Lett. 66, (1995) 3609.Google Scholar
22. Wanka, H.N., Hierzenberger, A., and Schubert, M.B., in Amorphous Silicon Technology, edited by Hack, M., Schiff, E.A., Madan, A., Powell, M., and Matsuda, A. (Mater. Res. Soc. Symp. Proc. 377, Pittsburgh,1995) pp. 263268.Google Scholar
23. Hu, Y.Z., Diehl, D.J., Liu, Q., Zhao, C.Y., and Irene, E.A., Appl. Phys. Lett 66, (1995) 700.Google Scholar
24. Zafar, S., Liu, Q., and Irene, E.A., J. Vac. Sci. Technol. A 13, 47 (1995).Google Scholar
25. Azzam, R.M.A. and Bashara, N.M., Ellipsometry and Polarized Light, (North-Holland, Amsterdam, 1977), pp.332–240.Google Scholar
26. Bruggeman, D.A.G., Ann, Phys, 24, 636 (1935).Google Scholar
27. Collins, R.W., Biter, W.J., Clark, A.H., and Windischmann, H., Thin Solid Films 129 (1985) 127.Google Scholar
28. Ganguly, G. and Matsuda, A., Phys. Rev. B 47, 3661 (1993).Google Scholar
29. Wanka, H.N. and Schubert, M.B., submitted to J. Appl. Phys.Google Scholar
30. Iqbal, Z. and Veprek, S., J. Phys. C 15, 377 (1982).Google Scholar