Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-26T05:19:04.971Z Has data issue: false hasContentIssue false

Effect of Lt GaAs on Epitaxial Al/GaAs Schottky Diode Characteristics

Published online by Cambridge University Press:  03 September 2012

Kai Zhang
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802
D. L. Miller
Affiliation:
Center for Electronic Materials and Processing, Department of Electrical and Computer Engineering
Get access

Abstract

The effect of LT GaAs on the effective barrier height of the epitaxial Al/GaAs Schottky contact was investigated for the first time by inserting a thin LT GaAs layer (50 ∼ 500Å) between the in situ deposited Al film and conventional MBE GaAs epitaxial layer. The activation energy plot of saturation current for the devices showed that the effective barrier height exhibits a dependence on LT GaAs thickness and reaches a saturated barrier height when the LT GaAs layer exceeds a critical thickness. Compared to the samples which had no LT GaAs layer, the effective Schottky barrier height was decreased from 0.79 eV to 0.35 eV for the n-GaAs samples, and increased from 0.55 eV to 0.72 eV for the p-GaAs samples. The Schottky barrier height modification achieved by LT GaAs is tentatively explained in the terms of a bulk Fermi level pinning model. The work described here suggests that LT GaAs can be used as a defect source with controlled thickness to study defect associated phenomena such as Schottky barrier height modification.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Smith, F. W., Calawa, A. R., Chen, Chang-Lee, Mahoney, M. J., IEEE Electron Device Letters 9, 77 (1988).CrossRefGoogle Scholar
2. Kaminska, M., Liliental-Weber, Z., Weber, E. R., and George, T., Kortright, J. B., Smith, F. W., Tsaur, B -Y., and Calawa, A. R., Appl. Phys. Lett. 54, 1881 (1989).Google Scholar
3. Yu, Kin Man and Liliental-Weber, Z., Appl. Phys. Lett. 59, 3267 (1991).Google Scholar
4. Warren, A. C., Woodall, J. M., Freeouf, J. L., Grischkowsky, D., Melloch, M. R., and Otsuka, N., Appl. Phys. Lett. 57, 1331 (1990).Google Scholar
5. Liliental-Weber, Z., Cooper, Greg, Mariella, Raymond Jr, Kocot, Chris, J. Vac. Sci. Technol. B 9, 2323 (1991).Google Scholar
6. Ashok, S., Wang, Y. G., and Nakagawa, O. S., Appl. Phys. Lett. 57, 1560 (1990), and the references thereinCrossRefGoogle Scholar
7. Zhang, T., Sigmon, T. W., Weiner, K. H., and Carey, P. G., Appl. Phys. Lett. 55, 580 (1989).Google Scholar
8. Zhang, T., and Sigmon, T. W., Appl. Phys. Lett. 58, 2785 (1991).Google Scholar
9. Walukiewicz, W., J. Vac. Sci. Technol. B 5, 1062 (1987); Phys. Rev. B 37, 760 (1988).CrossRefGoogle Scholar
10. Bennett, R. J., IEEE Transactions on Electron Devices 34, 935 (1987).Google Scholar
11. Wang, W. I., J. Vac. Sci. Technol. B 1, 574 (1983).CrossRefGoogle Scholar
12. Missous, M., Rhoderick, E. H., and Singer, K. E., J. Appl. Phys. 60, 2439 (1986).Google Scholar
13. Shen, H., Taysing-Lara, M., Calderon, L., Pamulapati, J., Dutta, M., and Fotiadis, L., presented at SPIE's Symposium on Compound Semiconductor Physics and Devices, Somerest, NJ, 1992 (to be published).Google Scholar
14. Look, D. C., Walters, D. C., Manasreh, M. O., Sizelove, J. R., Stutze, C. E., and Evans, K. R., Phys. Rev. B 42, 3578 (1990).Google Scholar
15. Manasreh, M. O., Look, D. C., Evans, K. R., and Stutz, C. E., Phys. Rev. B 41, 10272 (1990).Google Scholar
16. Yamamoto, H., Fang, Z -Q., and Look, D. C., Appl. Phys. Lett. 57, 1537 (1990).Google Scholar