Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-19T18:14:57.794Z Has data issue: false hasContentIssue false

Effect of Microstructure and Mechanical Properties on the Stress Corrosion Cracking Assessment of Type 304 Stainless Steel Using Slow Strain Rate Tests

Published online by Cambridge University Press:  31 January 2012

A. Contreras*
Affiliation:
Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas Norte 152, San Bartolo Atepehuacan, C. P. 07730, México. Tel: +52 5591758194.
S. L. Hernández
Affiliation:
Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas Norte 152, San Bartolo Atepehuacan, C. P. 07730, México. Tel: +52 5591758194.
E. Terres
Affiliation:
Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas Norte 152, San Bartolo Atepehuacan, C. P. 07730, México. Tel: +52 5591758194.
R. Galvan
Affiliation:
Unidad Anticorrosión, Instituto de Ingeniería, Universidad Veracruzana, Av. S.S. Juan Pablo II s/n, Fracc. Costa Verde, C.P. 94294, Veracruz, México.
*
Get access

Abstract

The stress corrosion cracking (SCC) of the commercial austenitic stainless steel type 304 was investigated as function of test temperature, microstructure and mechanical properties in acidic chloride solution (25 wt.%-MgCl2) using slow strain rate tests (SSRT). Susceptibility and mechanism of SCC was investigated using SSRT performed at strain rate of 1 x 10-6 in/s in a glass autoclave containing a magnesium chloride solution at 20, 50 and 80°C. The SCC assessment was carried out in function of the results of time to failure ratio (TFR), elongation ratio (ELR), ultimate tensile strength ratio (UTS-R), strain ratio(eR), yielding strength ratio (YS-R) and stress rupture ratio (SR-R). This assessment was complemented by some scanning electron microscopy (SEM) observations, in order to determine the type of fracture and its features. SSRT results indicate that 304 stainless steel was susceptible to SCC at 50 and 80°C. SCC susceptibility increases as the temperature increase. By the contrary, the mechanical properties decreases with temperature increase. SEM observations showed a ductile type of fracture, indicating that cracks appear to be originated from the pits, increasing the number of cracks as the temperature increases. Corrosion pits are one of the main potential sites for surface crack initiation. The stress concentration in the pits will be the nucleation site for cracks.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jones, R., Stress Corrosion Cracking, Edited by Jones, Russell H., ASM International, Ohio, U.S.A. (1992), p.140, 91-130.Google Scholar
2. Logan, H. L., The stress corrosion of metals, Ed. John Wiley and Sons, Inc. N.Y. (1966), p. 107, 116.Google Scholar
3. ASTM G36-2006 Evaluating stress-corrosion cracking resistance of metals and alloys in a boiling magnesium chloride solution, (2006), p. 13.Google Scholar
4. Nishimura, R., Corrosion Science, 49, 8191 (2007).Google Scholar
5. Nishimura, R., Maeda, Y., Corrosion Science, 46, 769785 (2004).Google Scholar
6. Mariano, N. A., Spinelli, D., Materials Science and Engineering A, 385, 212219 (2004).Google Scholar
7. Ugiansky, G. M., Payer, J.H. (Eds.), Stress Corrosion Cracking—The Slow Strain Rate Technique, American Society for Testing and Materials, Philadelphia, (1979).Google Scholar
8. Kane, R. D., Joia, C.J.B.M., Small, A.L.L.T. and Ponciano, J.A.C., Materials Performance, 36(9), 7174 (1997).Google Scholar
9. Vega, O. E., Villagomez, A., Hallen, J.M. and Contreras, A., Corrosion Engineering Science & Technology, 44(4), 289296 (2009).Google Scholar
10. Rhodes, P. R., Corrosion, 57, 923965 (2001).Google Scholar
11. Salazar, M., Espinosa, M. A. Hernández, P. and Contreras, A., Corrosion Engineering Science & Technology, 46(4), 464470 (2011).Google Scholar
12. NACE TM-0198-2004. Slow Strain Rate Test Method for Screening Corrosion Resistant Alloys (CRAs) for Stress Corrosion Cracking in Sour Oilfield Service, (2004), p.117.Google Scholar
13. ASTM G-129-2006. Slow strain rate testing to evaluate the susceptibility of metallic materials to environmentally assisted cracking, (2006), p.17.Google Scholar
14. Velazquez, Z., Guzman, E., Espinosa-Medina, M. A. and Contreras, A., Stress corrosion cracking behavior of X60 pipe steel in soil environment, Materials Research Society, Symposium Proceedings Vol. 1242, Edited by Pérez, R., Contreras, A. and Esparza, R., (2010), p. 6978.Google Scholar
15. Takano, M., Corrosion, 30(12), 441446 (1974).Google Scholar
16. Takano, M. and Totsuka, N., Corrosion, 36(1), 3641 (1980).Google Scholar
17. Nishimura, R. and Maed, Y., Corrosion Science, 46(3), 769785 (2004).Google Scholar
18. López, H. F., Cisneros, M. M., Mancha, H., García, O., Pérez, M. J., Corrosion Science, 48, 913924 (2006).Google Scholar
19. Al-Mansour, M., Alfantazi, A. M., El-boujdaini, M., Materials and Design, 30, 40884094. (2009).Google Scholar
20. Liang, P., Li, X., Du, C., and Chen, X., Materials & Design, 30, 17121717 (2009).Google Scholar