No CrossRef data available.
Published online by Cambridge University Press: 17 March 2011
In this work, we report on the effect of different dual gate oxide (DGox) processes on the electrical properties of CMOS devices in deep submicron embedded DRAM (eDRAM) technology. Also discussed, is the effect of N+ Ion Implantation on the diffusion / segregation behaviour of B and In channel dopants. In particular, it will be shown that the N+ dose required to obtain a certain combination of dual gate oxide thickness varies with the gate oxide process. Effects of N+ dose on the In and B channel profiles are studied using SIMS. The impact of “thickness-equivalent” DGox processes on short channel effect (SCE) and carrier mobility is analyzed and tradeoffs for optimization of device performances are discussed.