Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-12T05:34:10.993Z Has data issue: false hasContentIssue false

Effect of Pressure on Arsenic Diffusion in Germanium

Published online by Cambridge University Press:  22 February 2011

S. Mitha
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
S. D. Theiss
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
M. J. Aziz
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
D. Schiferl
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
D. B. Poker
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

We report preliminary results of a study of the activation volume for diffusion of arsenic in germanium. High-temperature high-pressure anneals were performed in a liquid argon pressure medium in a diamond anvil cell capable of reaching 5 GPa and 7500 C, which is externally heated for uniform and repeatable temperature profiles. The broadening of an ion-implanted arsenic profile was measured by Secondary Ion Mass Spectrometry. Hydrostatic pressure retards the diffusivity at 575°C, characterized by an activation volume that is +15% of the atomic volume of Ge. Implications for diffusion mechanisms are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mehrer, H. and Seeger, A., Crys Latt Def, 3, 1 (1972)Google Scholar
2. Dickerson, R.H., Lowell, R.C. and Tomizuka, C.T., Phys. Rev. 137, A613 (1965)Google Scholar
3. Mundy, J.N., Phys. Rev. B, 3, 2431 (1971)CrossRefGoogle Scholar
4. Werner, M., Mehrer, H. and Hochhiemer, H.D., Phys. Rev. B, 32, 3930 (1985)Google Scholar
5. Vinyard, G.H., Phys. Chem. Solids, 3, 121 (1957)Google Scholar
6. Frank, W., Gèisele, U., Mehrer, H. and Seeger, A., in Diffusion in Crystalline Solids, edited by Murch, G.E. and Norwick, A.S. (Academic Press, Orlando, FL, 1984), p. 63 Google Scholar
7. Olsen, G.L. and Roth, J.A., Mat. Sci. Reports, 3, 1 (1988)Google Scholar
8. Merrill, L. and Bassett, W.A., Rev. Sci. Instrum. 45, 290 (1974)Google Scholar
9. Hess, N. and Schiferl, D., J. Appl. Phys. 71, 2082 (1992)CrossRefGoogle Scholar
10. Larkins, F.P. and Stoneham, A.M., J. Phys. C., 4, 143 (1971); 4, 154 (1971)Google Scholar
11. Baraff, G.A., Kane, E.O. and Schluter, M., Phys. Rev. B, 21, 5662 (1980)Google Scholar
12. Lindefelt, U., Phys. Rev. B, 28, 4510 (1983).Google Scholar
13. Scheffler, M., Vigneron, J.P. and Bachelet, G.B., Phys. Rev. B, 31, 6541 (1985).Google Scholar
14. Antonelli, A. and , Bernholc, Phys. Rev. B, 40, 10643 (1989)Google Scholar
15. Spaepen, F. and Turnbull, D., AIP Conf. Proc. 50, 73 (1979)Google Scholar
16. Lu, G.Q., Nygren, E. and Aziz, M.J., J. Appl. Phys. 70, 5323 (1991)Google Scholar
17. Thiess, S.D., Mitha, S., Spaepen, F. and Aziz, M.J., in Crystallization and Related Phenomena in Amorphous Materials, edited by Libera, M., Cebe, P., Haynes, T., Dickenson, J.. (Mater. Res. Soc. Proc. 321, in press. 1993)Google Scholar