Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-30T04:31:52.125Z Has data issue: false hasContentIssue false

Effect of Pressure on the energy band gaps of InxGa1-xN and InxAl1-xN

Published online by Cambridge University Press:  11 February 2011

Z. Dridi
Affiliation:
LERMAT, FRE 2149-CNRS, ISMRA, 6 Boulevard Marechal Juin, 14050 Caen Cedex, France. Modelling and Simulation in Materials Science Laboratory, Physics Department, University of Sidi Bel-Abbes, 22000 Sidi Bel-Abbes, Algeria.
B. Bouhafs
Affiliation:
LERMAT, FRE 2149-CNRS, ISMRA, 6 Boulevard Marechal Juin, 14050 Caen Cedex, France. Modelling and Simulation in Materials Science Laboratory, Physics Department, University of Sidi Bel-Abbes, 22000 Sidi Bel-Abbes, Algeria.
P. Ruterana
Affiliation:
LERMAT, FRE 2149-CNRS, ISMRA, 6 Boulevard Marechal Juin, 14050 Caen Cedex, France.
Get access

Abstract

Using a first-principles method, we study the effect of pressure on the band gap energies of wurtzite InxGa1-xN, and InxAl1-xN. The fundamental band gap energies are direct and increase rapidly with pressure. The pressure coefficients vary in the range of 19.8–24.8 meV/GPa for InxGa1-xN, and 16.7–20.7 meV/GPa for InxAl1-xN; they depend on alloy composition with a strong deviation from linearity. The band gap bowing of the InGaN increases continuously with pressure while those of InAlN strongly decreases at p=14 GPa.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Monemar, B., Phys. Rev. B 10, 676 (1974).Google Scholar
2. Tansley, T. L. and Foley, C. P., J. Appl. Phys. 59, 3241 (1986).Google Scholar
3. Wu, J., Haller, E. E., Lu, H., Schaff, W. J., Saito, Y., and Nanishi, Y., Appl. Phys. Lett. 80, 3967 (2002).Google Scholar
4. Davydov, V.Yu., Klochikhin, A. A., Seisyan, R. P., Emtsev, V. V., Ivanov, S. V., Bechstedt, F., Furthmüller, J., Harima, H., Mudryi, A. V., Aderhold, J., Semchinova, O., and Graul, J., phys. stat. sol. (b) 229, R1 (2002).Google Scholar
5. Perry, P. B. and Rutz, R. F., Appl. Phys. Lett. 33, 319 (1978).Google Scholar
6. Yoshida, S., Misawa, S., and Gonda, S., J. Appl. Phys. 53, 6844 (1982).Google Scholar
7. Katz, O., Meyler, B., Tisch, U., and Salzman, J., phys. stat. sol. (a) 188, 789 (2001).Google Scholar
8. Shan, W., Walukiewicz, W., Haller, E. E., Little, B. D., Song, J. J., McCluskey, M. D., Johnson, N. M., Feng, Z. C., Schurman, M., and Stall, R. A., J. Appl. Phys. 84, 4452 (1998).Google Scholar
9. Shan, W., Song, J. J., Feng, Z. C., Schurman, M., and Stall, R. A., Appl. Phys. Lett. 71, 2433 (1997).Google Scholar
10. Shan, W., Perlin, P., Ager, J. W. III, Walukiewicz, W., Haller, E. E., McCluskey, M. D., Johnson, N. M., Bour, P., Appl. Phys. Lett. 73, 1613 (1998).Google Scholar
11. Perlin, P., Gorczyca, I., Suski, T., Wisniewski, P., Lepkowski, S., Christensen, N. E., Svane, A., Hansen, M., DenBaars, S. P., Damilano, B., Grandjean, N., and Massies, J., Phys. Rev. B 64, 115319 (2001).Google Scholar
12. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).Google Scholar
13. Blaha, P., Schwarz, K., and Luitz, J., WIEN97, Vienna University of Technology, 1997.Google Scholar
14. Perdew, J. P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).Google Scholar
15. Connolly, J. W. D. and Williams, W. R., Phys. Rev. B 27, 5169 (1983).Google Scholar
16. Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).Google Scholar
17. Dridi, Z., Bouhafs, B., and Ruterana, P., New Journal of Physics 4, 94.1 (2002).Google Scholar
18. Dridi, Z., Bouhafs, B., and Ruterana, P., phys. stat. sol. (b) (2002), in press.Google Scholar