Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-18T10:16:56.765Z Has data issue: false hasContentIssue false

The Effect of SiGe Barriers on the Thermal Stability of Highly B-Doped Si Surface Layers

Published online by Cambridge University Press:  11 February 2011

Phillip E. Thompson
Affiliation:
Code 6812, Naval Research Laboratory, Washington, DC 20375, U.S.A.
Joe Bennett
Affiliation:
International SEMATECH, Austin TX 78741, U.S.A.
Robert Crosby
Affiliation:
Code 6812, Naval Research Laboratory, Washington, DC 20375, U.S.A.
Mark E. Twigg
Affiliation:
Code 6812, Naval Research Laboratory, Washington, DC 20375, U.S.A.
Get access

Abstract

We have investigated the use of low-temperature (320 °C) molecular-beam epitaxy (MBE) to form highly conductive, p+, ultra-shallow layers in Si. Although the as-grown B-doped Si is electrically active, in a practical application the doped layers may be exposed to high temperature during post-growth device processing. To minimize the B diffusion, we investigated the use of SiGe diffusion barrier layers. In this work we demonstrate there is less B redistribution with the SiGe diffusion barriers. The use of SiGe diffusion barriers may prove to be critical in the activation of B implants for the formation of ultra-shallow junctions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] The International Technology Roadmap for Semiconductors, 1999 ed. [http://public.itrs.net].Google Scholar
[2] Collart, E. J. H., Weemers, K., Gravesteijn, D. J., and Van Berkum, J. G. M., J. Vac. Sci. Tech. B 16, 280 (1998).Google Scholar
[3] Matyi, R. J., Felch, S. B., Lee, B. S., Strathman, M. R., Keenan, J. A., Guo, Y., and Wang, L., J. Vac. Sci. Tech. B 16, 435 (1998).Google Scholar
[4] Agarwal, A., Eaglesham, D. J., Gossmann, H.-J., Pelaz, L., Herner, S. B., Jacobson, D. C., Haynes, T. E., Erokhin, Y., and Simonton, R., IEDM Technol. Dig. 97, 467 (1997).Google Scholar
[5] Agarwal, A., Gossmann, H.-J., and Eaglesham, D. J., Appl. Phys. Lett. 74, 2331 (1999).Google Scholar
[6] Thompson, P. E. and Bennett, Joe, Appl. Phys. Lett. 77 2569 (2000).Google Scholar
[7] Thompson, P. and Bennett, J., Materials Science and Engineering B89 211 (2002).Google Scholar
[8] Thompson, P. and Bennett, J., J. Appl. Phys.Google Scholar
[9] Eaglesham, D. J., Gossmann, H. -J., and Cerullo, M., Phys. Rev. Lett. 65, 1227 (1990).Google Scholar
[10] Sasaki, Y., Itoh, K., Inoue, E., Kishi, S., and Mitsuishi, T., Solid-State Electron. 31, 5 (1988).Google Scholar
[11] Fiory, A. T. and Bourdelle, K. K., J. Electron. Mater. 28, 1345 (1999).Google Scholar