Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-04T03:32:20.364Z Has data issue: false hasContentIssue false

The Effect of Temperature on Defect Production in Copper Doped with Beryllium

Published online by Cambridge University Press:  25 February 2011

A. C. Baily
Affiliation:
Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60201
Wayne E. King
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
K. L. Mrkle
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
M. Meshii
Affiliation:
Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60201
Get access

Abstract

The effect of temperature on radiation-induced defect production was investigated in Cu single crystal films doped with ∼ 100 ppm Be. Frenkel pair production was determined at 55K and 190K as a function of electron energy and incident beam direction using in situ electrical resistivity measurements in the high voltage electron microscope. The crystallographic anisotropy of defect production was found to be considerably greater for irradiations at 55K than for irradiations below 10K. This difference is related largely to an observed anisotropy in the stage I defect recovery. It was found in isochronal annealing experiments after irradiation nearthreshold that the resistivity remaining after stage I was nearly twice as large for recoils along <110> as compared to <100>.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vajda, P., Rev. Mod. Phys. 49, 481 (1977).10.1103/RevModPhys.49.481Google Scholar
2. Urban, K. and Yoshida, N., Philos. Hag. A 44, 1193 (1981).10.1080/01418618108235802Google Scholar
3. Drosd, R., Kosel, T. and Washburn, J., J. Nucl. Mater. 69 & 70, 804 (1978).10.1016/0022-3115(78)90347-1CrossRefGoogle Scholar
4. King, Wayne E., Merkle, K. L. and Meshii, M., Phys. Rev. B 23, 6319 (1981).10.1103/PhysRevB.23.6319CrossRefGoogle Scholar
5. Makin, M. J., Philos. Mag. 18, 637 (1969); M. J. Makin, Philos. Mag., 20, 1133 (1969).10.1080/14786436808227466Google Scholar
6. Kenik, E. A. and Mitchell-, T., Philos. Mag. 32, 815 (1975).10.1080/14786437508221622Google Scholar
7. Roth, G., Wollenberger, H., Zechau, Ch. and Lucke, K., Radiat. Fff. 26, 141 (1975).10.1080/00337577508234743Google Scholar
8. King, Wayne E., Merkle, K. L. and Meshii, M., J. Nucl. Hater. 117, 12 (1983).10.1016/0022-3115(83)90005-3Google Scholar
9. Walker, R. M., Proceedings of the International School of Physics, “E. Fermi”, ed. by Billington, D. S. (Academic Press, New York, 1962), p. 594.Google Scholar
10. Dworschak, F., Schuster, H., Wollenberger, H. and Wurm, J., Phys. Status Solidi 29, 75 (1968).10.1002/pssb.19680290107Google Scholar
11. Lennartz, R. E., Dworschak, F. and Wollenberger, H., J. Phys. F 7, 2011 (1977).10.1088/0305-4608/7/10/005Google Scholar
12. Bartels, A., Bewerunge, J., Dworschak, F. and Wollenberger, H., J. Phys. F. 12, 641 (1982).10.1088/0305-4608/12/4/006Google Scholar
13. Oen, O.S., Oak Ridge National Laboratory Report No. 4897 (1973).Google Scholar
14. King, Wayne E. and Benedek, R., Proceedings of Point Defects and Defect Interactions in Metals, edited by Takamura, J., Doyama, M. and Kiritani, M. (UniversitFy of Tokyo Press, Kyoto, Japan 1982) p. 807.Google Scholar
15. Merkle, K. L., King, Wayne E., Baily, A. C., Haga, K. and Meshii, M., J. Nucl. Mater. 117, 4 (1983).10.1016/0022-3115(83)90004-1Google Scholar
16. Sondheimer, E. H., Adv. Phys. 1, 1 (1952).10.1080/00018735200101151CrossRefGoogle Scholar