Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-04T11:21:08.403Z Has data issue: false hasContentIssue false

Effect of the internal electric fields in Quantum Dot laser structures grown by Metal Organic Chemical Vapor Deposition

Published online by Cambridge University Press:  01 February 2011

A. Passaseo
Affiliation:
National Nanotechnology Laboratory-INFM, c/o Dipartimento di Ingegneria dell'Innovazione, Università di Lecce, Via Arnesano, 73100 Lecce (Italy)
G. Maruccio
Affiliation:
National Nanotechnology Laboratory-INFM, c/o Dipartimento di Ingegneria dell'Innovazione, Università di Lecce, Via Arnesano, 73100 Lecce (Italy)
M. De Vittorio
Affiliation:
National Nanotechnology Laboratory-INFM, c/o Dipartimento di Ingegneria dell'Innovazione, Università di Lecce, Via Arnesano, 73100 Lecce (Italy)
S. De Rinaldis
Affiliation:
National Nanotechnology Laboratory-INFM, c/o Dipartimento di Ingegneria dell'Innovazione, Università di Lecce, Via Arnesano, 73100 Lecce (Italy)
T. Todaro
Affiliation:
National Nanotechnology Laboratory-INFM, c/o Dipartimento di Ingegneria dell'Innovazione, Università di Lecce, Via Arnesano, 73100 Lecce (Italy)
R. Cingolani
Affiliation:
National Nanotechnology Laboratory-INFM, c/o Dipartimento di Ingegneria dell'Innovazione, Università di Lecce, Via Arnesano, 73100 Lecce (Italy)
Get access

Abstract

By means of a systematic study carried out on In0.5Ga0.5As/GaAs quantum dot electroluminescent devices grown by Metal Organic Chemical Vapor Deposition, we show that the combination of internal electric fields in such structures dramatically blue shifts the emission wavelength with respect the photoluminescence emission that occurs at the expected value of 1.3 νm at room temperature. By comparing photoluminescence (PL), electroluminescence (EL) and photocurrent (PC) measurements in In0.5Ga0.5As QD structures emitting between 1.28 νm and 1.4 νm (at 300 K), we demonstrate that the electric field associated to the built-in dipole in the dots, directed from the base of the dots to their apex, and the device junction field (when parallel to the dipole field) lead to the depletion of the ground state. As a consequence, structures grown on n-type GaAs substrates exhibit electroluminescence only from the excited states. Instead, by growing the same device structure on p-type GaAs substrates, i.e. by reversing the direction of the built-in electric field of the device, the effect of the permanent dipole is strongly reduced, thus allowing us to obtain EL emission at the designed wavelength of 1.3 νm at 300 K, coincident to the PL. The consequence on the achievement of efficient lasing in the spectral region of interest for optical transmission. are illustrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Arakawa, Y. and Sakaki, H., Appl. Phys. Lett. 40, 939 (1982)Google Scholar
2. Sakaki, H., Jpn. J. Appl. Phys Appl. Phys., Part 2 28, L314 (1989)Google Scholar
3. Huffaker, D.L., Park, G., Zou, Z., Shchekin, O.B., and Deppe, D.G., IEEE J. Quantum Electron. 6, 452 (2000)Google Scholar
4. Mukai, K., Nakata, Y., Otsubo, K., Sugawara, M., Yokoyama, N., Ishikawa, H., Appl. Phys. Lett. 76, 3349 (2000)Google Scholar
5. Bloch, J., Shah, J., Hobson, W.s., Lopata, J., Chu, S.N.G., Appl. Phys. Lett. 75, 2199 (1999)Google Scholar
6. Passaseo, A., Maruggio, G., Vittorio, M. De, Rinaldi, R., Cingolani, R., and Lomascolo, M. Appl. Phys. Lett, 78, 1382 (2001)Google Scholar
7. Passaseo, A., Rinaldi, R., Longo, M., Antonaci, S., Convertino, A.L., Cingolani, R., Taurino, A., Catalano, M., J. Appl. Phys. 89, 4341 (2001)Google Scholar
8. Barker, A. and O'Relly, P., Phys. Rev. B 61, 13840 (2000)Google Scholar
9. Fry, P.W., Itskevich, I.E., Mowbray, D.J., Skolnick, M.S., Finley, J.J., Barker, J.A., O'Relly, E., Wilson, L.R., Larkin, I.A., Masksym, P.A., Hopkinson, M., Al-Khafaji, M., David, J.P.R., Cullis, A.G., Hill, G., and Clark, J.C., Phys. Rev. Lett. 84, 733 (2000)Google Scholar
10. Passaseo, A., Maruccio, G., Vittorio, M. De, Rinaldis, S. De, Todaro, T., Rinaldi, R. and Cingolani, R., Appl. Phys. Lett., 79, 1435 (2001)Google Scholar
11. Shumway, J., Williamson, A. J., Zunger, A., Passaseo, A., DeGiorgi, M., and Cingolani, R., Catalano, M., Crrozier, P., Phys. Rev. B 64, 125302 (2001)Google Scholar
12. Crozier, P.A., Catalano, M., Cingolani, R., Passaseo, A., Appl. Phys. Lett., 79, 3170 (2001)Google Scholar