Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-26T04:32:52.379Z Has data issue: false hasContentIssue false

Effects of Alpha Irradiation on Barium Hollandite and Nickel-Iron Spinel

Published online by Cambridge University Press:  26 February 2011

W. J. Weber*
Affiliation:
Pacific Northwest Laboratory, (a) P.O. Box 999, Richland, WA 99352
Get access

Abstract

Barium hollandite and nickel-iron spinel have been irradiated with alpha particles emitted from a PuO2 source in order to simulate the effects from alpha particles emitted in adjacent actinide-containing phases of the SYNROC assemblage. The unit cell of barium hollandite undergoes an apparent volume expansion of several percent and a weak transformation from a tetragonal to a monoclinic structure when irradiated with alpha particles to a fluence of 3 × 1020 alphas/m2 (∼0.05 dpa). The spinel structure, however, is stable with respect to alpha irradiation and the irradiation-induced volume expansion of the unit cell is less than 0.2%. The results are compared with available neutron-irradiation data, and the differences in observed behavior discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[ 1] Ringwood, A. E., Kesson, S. E., Ware, N. G., Hibberson, W. O., and Major, A., Geochem. J., 13:141 (1979).CrossRefGoogle Scholar
[ 2] Cambell, J. H., Hoenig, C. L., Bazan, F., Ryerson, F. J., and Rozsa, R., Scientific Basis for Nuclear Waste Management, Topp, S. V. ed., pp. 4957 (North-Holland, NY, 1982).Google Scholar
[ 3] Weber, W. J., Turcotte, R. P., and Roberts, F. P., Radioactive Waste Management, 2:295 (1982).Google Scholar
[4] Weber, W. J. and Roberts, F. P., Nucl. Tech., 60:178 (1983).Google Scholar
[5] Weber, W. J., Scientific Basis for Nuclear Waste Management-VI, Brookins, D. G. ed., pp. 407414 (North-Holland, NY, 1983).Google Scholar
[6] Reeve, K. D. and Woolfrey, J. L., J. Austr. Ceram. Soc., 16:10 (1980).Google Scholar
[7] Ball, C. J. and Woolfrey, J. L., J. Nucl. Mater., 118:159 (1983).Google Scholar
[8] Woolfrey, J. L., Reeve, K. D., and Cassidy, D. J., J. Nucl. Mater., 108 & 109:739 (1982).Google Scholar
[ 9] Weber, W. J., J. Nucl. Mater., 98:206 (1981).Google Scholar
[10] Weber, W. J., J. Nucl. Mater., 114:213 (1983).Google Scholar
[11] Weber, W. J., Radiation Effects, 70:217 (1983).CrossRefGoogle Scholar
[12] Bystrom, A. and Bystrom, A. M., Acta Cryst., 3:146 (1950).Google Scholar
[13] Wald, J. W. and Weber, W. J., Advances in Ceramics, Vol.8, Nuclear Waste Management, Wicks, G. G. and Ross, W. A. eds., pp. 7175 (American Ceramic Society, Inc., Columbus, OH, 1984).Google Scholar
[14] Headley, T. J., Arnold, G. W., and Northrup, C. J. M., Scientific Basis for Nuclear Waste Management - V, Lutze, W. ed., pp. 379388 (North Holland, New York, 1982).Google Scholar
[15] Karioris, F. G., Gowda, K. Appaji, Cartz, L., and Labbe, J. C., J. Nucl Mater. 108&109:748(1982).Google Scholar
[16] Barry, J. C., Hutchison, J. L., and Segall, R. L., J. Mater. Sci., 18:1421 (1983).CrossRefGoogle Scholar
[17] Mukherjee, B., Acta Cryst., 13:164 (1960).Google Scholar
[18] Kelly, R., Nucl. Instruments and Methods, 182/183:351 (1981).Google Scholar
[19] Blewitt, T. H., Klank, A. C., Scott, T., and Weber, W. J., Radiation- Induced Voids in Metals, Corbett, J. W. and lanniello, L. C., eds. pp. 757767(CONF-710601, National Technical Information Service, Springfield, VA 1972).Google Scholar
[20] Noe, M., Fuger, J., and Duyckaerts, G., Inorg. Nucl. Chem. Lett., 6:111 (1970).Google Scholar
[21] Hurley, G. F., Kennedy, J. C., Clinard, F. W. Jr, Youngman, R. A., and McDonell, W. R., J. Nucl. Mater., 103 & 104:761 (1981).Google Scholar