Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-17T10:25:40.809Z Has data issue: false hasContentIssue false

Effects of Boron Implantation on Silicon Dioxide Passivated HgCdTe

Published online by Cambridge University Press:  25 February 2011

R. C. Bowman Jr
Affiliation:
The Aerospace Corporation, Laboratory Operations, P. O. Box 92957 Los Angeles, CA 90009
J. Marks
Affiliation:
The Aerospace Corporation, Laboratory Operations, P. O. Box 92957 Los Angeles, CA 90009
R. G. Downing
Affiliation:
Center for Analytical Chemistry, National Bureau of Standards, Gaithersburg, MD 20899
J. F. Knudsen
Affiliation:
The Aerospace Corporation, Laboratory Operations, P. O. Box 92957 Los Angeles, CA 90009
G. A. To
Affiliation:
The Aerospace Corporation, Laboratory Operations, P. O. Box 92957 Los Angeles, CA 90009
Get access

Abstract

The influence of boron ion implants on the optical and physical properties of photochemically deposited SiO2 films on HgO 7 CdO 3Te and silicon has been investigated. The distributions of the boron atoms between the SiO2 film and substrate have been determined by a nondestructive neutron depth profiling method. The implants produce an apparent densification of the SiO2 films, which is accompanied by an increase in refractive index and changes in the infrared vibrational spectra for these films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Herman, M. A. and Pessa, M., J. Appl. Phys. 57, 2671 (1985).Google Scholar
Reline, M. B., Good, A. K., and Tredwell, T. J., in Semiconductors and Semimetal - Mercury Cadmium Telluride, Vol.19, edited by Willardson, R. K. and Beer, A. C. (Academic Press, New York, 1981) p. 201 Google Scholar
3. Janousek, B. K., Carscallen, R. C., and Bertrand, P. A., J. Vac. Sci. Technol. A 1, 1723 (1983); B. K. Janousek and R. C. Carscallen, J. Vac. Sci. Technol. A, 3, 195 (1985); J. F. Wager and D. R. Rhiger, J. Vac. Sci. Technol. A, 3, 212 (1985).Google Scholar
4. Marks, J. (to be published).Google Scholar
5. Destefanis, G. L., Nucl. Instru. Methods 209/210, 567 (1983).Google Scholar
6. Sigmon, T. W., Nucl. Instru. Methods B 7/8, 4102 (1985)Google Scholar
7. Kao, T. M. and Sigmon, T. W., Appl. Phys. Lett 49, 464 (1986).Google Scholar
8. Bowman, R. C. Jr., Robertson, R. E., Knudsen, J. F., and Downing, R. G., Proc. of S.P.I.E.Symposium on Infrared Detectors, Sensors, and Focal Plane Arrays - Conference 686, Nakamura, H., Ed., (1986), p. 18.Google Scholar
9. Ryssel, H., Mueller, K., Biersack, J., Kruger, W., Lang, G., and Jahnel, F., Phys. stat. sol. (a) 57, 619 (1980).Google Scholar
10. Downing, R. G., Fleming, R. F., Langland, J. K., and Vincent, D. H., Nucl. Instrum. Methods 218, 47 (1983).Google Scholar
11. GÖtz, G., Nucl. Instru. Methods 199, 61 (1982).Google Scholar
12. Fiori, C. and Devine, R. A. B., Phys. Rev. B 33, 2972 (1986).Google Scholar
13. Schumann, L., Lehmann, A., Sobotta, H., Riede, V., Teschner, U., and HWibner, K., phys. stat. sol.(b) 110, K69 (1982 ). Google Scholar
14. Pai, P. G., Chao, S. S., Takagi, Y., and Lucovsky, G., J. Vac. Sci. Technol. A. 4, 689 (1986).Google Scholar
15. Tsu, D. V., Locovsky, G., and Mantini, M. J., Phys. Rev. B 33, 7069 (1986).Google Scholar
16. Rogers, H. N. and Rhiger, D. R., Air Force Contractor Final Report AFWALTR-84-4056.Google Scholar