Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-20T08:28:56.612Z Has data issue: false hasContentIssue false

Effects of Excimer Laser Irradiation on Mbe and Mo-Mbe Growth of (Al)Gaas On Gaas And (Ca,Sr)F2/Gaas Substrates

Published online by Cambridge University Press:  26 February 2011

V. M. Donnelly
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
C. W. Tu
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
J. C. Beggy
Affiliation:
Student in Department of Electrical Engineering, Yale University, New Haven, CT 06520.
V. R. McCrary
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
T. D. Harris
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
M. G. Lamont
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
F. A. Baiocchi
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
R. C. Farrow
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

We report the growth of GaAs by laser-assisted molecular beam epitaxy, using As4 and either elemental Ga or triethylgallium (TEG) sources, and a 193 nm ArF excimer laser. Laser irradiation of (Al)GaAs has no effect on the growth rate or Ga-to-Al incorporation, when GaAs substrates and elemental group-III sources are used. When GaAs is grown from TEG, laser irradiation results in a selective-area film growth at temperatures below 450°C, where growth due to pyrolytic decomposition of TEG is very slow. The process is extremely efficient, with roughly unit probability for impinging TEG molecules sticking and being dissociated by laser radiation to form GaAs. From the strong dependence on laser fluence, the growth enhancement process appears to be pyrolytic in nature (due to rapid transient healing by the pulsed laser), and not photolytic. The cross section for photolysis must be at least ten times lower than the gas-phase value (9x10-18cm2). Using either Ga source, laser irradiation improves surface morphology and photoluminescence yields, compared to areas receiving less intense laser radiation.

In growth of GaAs from elemental sources on (Ca, Sr)F2 lattice-matched to GaAs, laser irradiation inhibits growth due to laser-induced thermal desorption of adsorbed Ga atoms, which are relatively weakly bound to (Ca,Sr)F2 compared to GaAs surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Mullin, J. B. and Irvine, S. J. C., J. Phys. D14, L149 (1981); S. J. C. Irvine, J. B. Mullin, J. Tunnicliffe, J. Crystal Growth 68, 188 (1984).Google Scholar
2 Kisker, D. W. and Feldman, R. D., J. Crystal Growth 72, 102 (1985).Google Scholar
3 Morris, B. J., Appl. Phys. Lett. 48, 867 (1986).Google Scholar
4 Lu, P. Y., Wang, C.-H., Williams, L. M., Chu, S.-N. G., and Stiles, C. M., Appl. Phys. Lett. 49, 1372 (1986).Google Scholar
5 See, for example, Heteroepitaxy on Silicon, edited by J. C. C. Fan and J. M. Poate (Mat. Res. Soc., Pittsburgh, 1986).Google Scholar
6 Tu, C. W., Wang, S. J., Phillips, J. M., Gibson, J. M., Stall, R. A., and Wunder, R. J., J. Vac. Sci. Technol. B4, 637 (1986).Google Scholar
7 Donnelly, V. M., Geva, M., Long, J., and Karlicek, R. F., Appl. Phys. Lett. 44, 951 (1984).Google Scholar
8 Donnelly, V. M., Brasen, D., Appelbaum, A., and Geva, M., J. Appl. Phys. 58, 2022 (1985).Google Scholar
9 Donnelly, V. M., McCrary, V. R., Appelbaum, A., Brasen, D., and Lowe, W. P., J. Appl. Phys., 61, 1410 (1987).Google Scholar
10 McCrary, V. R., Donnelly, V. M., Brasen, D., Appelbaum, A., and Farrow, R. C., Mat. Res. Soc. Symp. Proc., Vol. 75, p 223 (1987).Google Scholar
11 Balk, P., Heinecke, H., Plass, C., Pütz, N., and Liith, H., J. Vac. SCi. Technol. A4, 711 (1986).Google Scholar
12 Haigh, J., J. Vac. Sci. Technol, B3, 1456 (1985).Google Scholar
13 Nishizawa, J., Abe, H., Kurabayashi, T., and Sakurai, N., J. Vac. Sci. Technol., A4, 706 (1986).Google Scholar
14 Doi, A., Aoyagi, Y., and Namba, S., Mat. Res. Soc. Symp. Proc., Vol. 75, p 217 (1987).Google Scholar
15 Karam, N. H., Bedair, S. M., ElMasry, N. A., and Griffis, D., Mat. Res. Soc. Symp. Proc. 75, 241 (1987).Google Scholar
16 Takahashi, K., Inst. Phys. Conf. Ser. No. 79, Ch. 2, p 73 from Int. Symp. GaAs and Related Compounds, Karuizawa, Japan, 1985 Google Scholar
17 Tu, C. W., Donnelly, V. M., Beggy, J. C., Baiocchi, F. A., McCrary, V. R., Harris, T. D., and Lamont, M. G., Appl. Phys. Lett, in press, 1988.Google Scholar
18 Donnelly, V. M., Tu, C. W., Beggy, J. C., McCrary, V. R., Lamont, M. G., Harris, T. D., Baiocchi, F. A., and Farrow, R. C., Appl. Phys. Lett., in press, 1987.Google Scholar
19 Fischer, R., Klem, J., Drummond, T. J., Thorne, R. E., Kopp, W., Morkoc, H., and Cho, A. Y., J. Appl. Phys. 54, 2508 (1983).Google Scholar
20 Pearton, S. J., Cummings, K. D., and Vella-Coleiro, G. P., J. Electrochem. Soc. 132, 2743 (1985).Google Scholar
21 Wicks, G. W., Wang, W. I., Wood, C. E. C., Eastman, L. F., and Rathburn, L., J. Appl. Phys. 52, 5792 (1981).Google Scholar
22 Tsutsui, K., Nakazawa, T., Asano, T., Ishiwara, H., and Furukawa, S., IEEE Electron Device Lett. EDL-8, 277 (1987).Google Scholar
23 Tu, C. W., Beggy, J. C., Baiocchi, F. A., Abys, S. M., Pearton, S. J., Hsieh, S. J., Kopf, R. F., Caruso, R., Jordan, A. S., in Heteroepitaxy on Silicon Technology, edited by Fan, J. C. C., Phillips, J. M., and Tsaur, B.-Y. (Mat. Res. Soc., Pittsburgh, 1987).Google Scholar
24 Tu, C. W., Ajuria, S. A., and Temkin, H., Appl. Phys. Lett. 49, 920 (1986).Google Scholar
25 Tu, C. W., Sheng, T. T., Read, M. H., Schlier, A. R., Johnson, J. G., Johnston, W. D. Jr., and Bonner, W. A., J. Electrochem. Soc. 130, 2081 (1983).Google Scholar
26 Todd, S. S., J. Chem. Phys. 71, 4115 (1949).Google Scholar
27 Matyi, R. J., Sichijo, H., Moore, T. M., and Tsai, H.-L., Appl. Phys. Lett. 57, 18 (1987).Google Scholar
28 Tsang, W. T., Chiu, T. H., Cunningham, J. E., and Robertson, A., Appl. Phys. Lett. 50, 1376 (1987).Google Scholar
29 Bartmess, J. E. and Georgiadis, R. M., Vacuum 30, 149 (1983).Google Scholar
30 Sharma, D. K. and Pandey, A. N., J. Acta Ciencia Indica 1, 35 (1974).Google Scholar
31 Müler, K. J. and Savchik, J. A., J. Am. Chem. Soa, 101, 7206 (1979).Google Scholar
32 McCrary, V. R. and Donnelly, V. M., J. Crystal Growth, in press, 1987.Google Scholar
33 Kudou, Y., Tokumitsu, E., Konagai, M., and Takahashi, K., Extended Abstracts of the 16th (1984 International) Conference on Solid State Devices and Materials, Kobe, 1984, p687.Google Scholar
34 Tsang, W. T., Appl. Phys. Lett., 45, 1234 (1984).Google Scholar
35 Balk, P., Fischer, M., Grundmann, D., Liickerath, R., Lüth, M., and Richter, W., to be published.Google Scholar