Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-15T00:26:40.007Z Has data issue: false hasContentIssue false

Effects of Microstructure on the Electrical Conductivity of SrCo0.8Fe0. 2O3

Published online by Cambridge University Press:  10 February 2011

K. Zhang
Affiliation:
The Materials Research Science and Engineering Center University of Houston Houston, TX 77204 - 5500
M. Miranova
Affiliation:
The Materials Research Science and Engineering Center University of Houston Houston, TX 77204 - 5500
Y. L. Yang
Affiliation:
The Materials Research Science and Engineering Center University of Houston Houston, TX 77204 - 5500
A. J. Jacobson
Affiliation:
The Materials Research Science and Engineering Center University of Houston Houston, TX 77204 - 5500
K. Salama
Affiliation:
The Materials Research Science and Engineering Center University of Houston Houston, TX 77204 - 5500
Get access

Abstract

The effect of microstructure on the electrical conductivity of SrCO0.8Fe0.2O3_δ (SCFO) was investigated in air using a four-point dc method. In the test temperature range of 200 to 900 °C, the electrical conductivity of this material was observed to increase with the increase of the average grain size in the lower temperature region where the conductivity increases with the increase of the temperature. The activation energy is decreased with the increase of the grain size in this region, 0.04 ± 0.004 ev for 4.1μm sample and 0.01 ± 0.001 ev for 14.8 μm sample. When temperature is further increased, the conductivity of this material decreases with the increase of the temperature, and the grain size effect becomes less noticeable.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gur, T. M., Belzner, A. and Huggins, R. A., J. Membrane Sci., 75, p. 151 (1992).Google Scholar
2. Van Roosmalen, J. A. M., Cordfunke, E. H. P. and Huijsmans, J. P. P., Solid State Ionics, 66, p. 285 (1993).Google Scholar
3. Teraoka, Y., Nobunaga, T. and Yamazoe, N., Chemistry Letters, p. 503 (1988).Google Scholar
4. Garcia-Belmonte, G., Bisquert, J., Fabregat, F., Kozhukharov, V. and Carda, J. B., Solid State Ionics, 107, p. 203 (1998).Google Scholar
5. Minh, N. Q. and Takahashi, T., Sci. & Technology of Ceramic Fuel Cells, Elsevier Science B. V., Amsterdam, 1995, p. 128.Google Scholar
6. Stevenson, J. W., Armstrong, T. R., Carneim, R. D., Pederson, L. R., and Weber, W. J., J. Electrochem. Soc. 143, p. 2,722 (1996).Google Scholar
7. Kim, S., Yang, Y. L., Christoffersen, R., Jacobson, A. J., Solid State Ionics, 104, p. 57 (1997).Google Scholar
8. Hofer, H. E. and Schmidberger, R., J. Electrochem. Soc., 141, p. 782 (1994).Google Scholar
9. Zhang, K., Yang, Y. L., Ponnusamy, D., Jacobson, A. J., and Salama, K., Journal of Materials Science, in press, 1997.Google Scholar
10. Moulson, A. J., Herbert, J. M., Electroceramics, Chapman and Hall, London, 1990, p42.Google Scholar
11. Tay, L. W., Nasrallah, M., Anderson, H., Sparlin, D., Solid State Ionics, 76, p. 259 (1995).Google Scholar
12. Badwal, S. P. S., Drennan, J., J. Mater. Sci, 22, p. 3,231 (1987).Google Scholar
13. Verkerk, M. J., Middelhuis, B. J. and Burggraaf, A. J., Solid State Ionics, 6, p. 159 (1982).Google Scholar
14. Larbalestier, D. C., Babcock, S. E., Cai, X. Y., Field, M. B., Gao, Y., Heining, N. F., Kaiser, D. L., Merkle, K., Williams, L. K., Zhang, N., Physica C, 185 –189, p. 315 (1991).Google Scholar
15. Sarma, C., schindler, G., Haase, D. G., Koch, C. C., Saleh, A. M., Kingon, A. I., Appl. Phys. Lett. 64, p. 109 (1994).Google Scholar
16. Mironova, M., Du, G., Sathyamurthy, S., and Salama, K., Phil. Mag. A. in press, 1998.Google Scholar